

In photosynthesis process, 'energy rich compounds like carbohydrates are synthesized from simple inorganic compounds like carbon dioxide and water in the presence of chlorophyll and sunlight with liberation of oxygen'. The process of photosynthesis can also be defined as "transformation of photonic energy (i.e., light or radiant energy) into chemical energy".

About 90% of total photosynthesis in world is done by algae in oceans and in freshwater. More than 170 billion tonnes of dry matter are produced annually by this process. Further CO_2 fixed annually through photosynthesis is about 7.0 × 10^{13} kg. Photosynthesis is a reductive, anabolic and endothermic reaction. Photosynthesis helps to maintain the equilibrium position of O_2 and CO_2 in the atmosphere.

Historical background

Before seventeenth century it was considered that plants take their food from the soil.

□ Van Helmont (1648) concluded that all food of the plant is derived from water and not from soil.

□ Stephen Hales (Father of Plant Physiology) (1727) reported that plants obtain a part of their nutrition from air and light may also play a role in this process.

Joseph Priestley (1772) demonstrated that green plants (mint plant) purify the foul air (*i.e.*, Phlogiston), produced by burning of candle, and convert it into pure air (*i.e.*, Dephlogiston).

□ Jan Ingen-Housz (1779) concluded by his experiment that purification of air was done by green parts of plant only and that too in the presence of sunlight. Green leaves and stalks liberate dephlogisticated air (Having O_2) during sunlight and phlogisticated air (Having CO_2) during dark. □ **Jean Senebier** (1782) proved that plants absorb CO_2 and release O_2 in the presence of light. He also showed that the rate of O_2 evolution depends upon the rate of CO_2 consumption.

□ Nicolus de Saussure (1804) showed the importance of water in the process of photosynthesis. He further showed that the amount of CO_2 absorbed is equal to the amount of O_2 released.

□ Julius Robert Mayer (1845) proposed that light has radiant energy and this radiant energy is converted to chemical energy by plants, which serves to maintain life of the plants and also animals.

Liebig (1845) indicated that main source of carbon in plants is CO_2 .

Bousingault (1860) reported that the volume of CO_2 absorbed is equal to volume of O_2 evolved and that CO_2 absorption and O_2 evolution get start immediately after the plant was exposed to sunlight.

□ Julius Von Sachs (1862) demonstrated that first visible product of photosynthesis is starch. He also showed that chlorophyll is confined to the chloroplasts.

□ Melvin Calvin (1954) traced the path of carbon in photosynthesis (Associated with dark reactions) and gave the C_3 cycle (Now named Calvin cycle). He was awarded Nobel prize in 1961 for the technique to trace metabolic pathway by using radioactive isotope.

□ **Huber, Michel** and **Deisenhofer** (1985) crystallised the photosynthetic reaction center from the purple photosynthetic bacterium, *Rhodopseudomonas viridis*. They analysed its structure by X-ray diffraction technique. In 1988 they were awarded Nobel prize in chemistry for this work.

Chloroplast (The site of photosynthesis) : Chloroplast are green plastids which function as the site of photosynthesis in eukaryotic photoautotrops. It fixes CO_2 into carbohydrate.

Photosynthetic unit can be defined as number of pigment molecules required to affect a photochemical act, that is the release of a molecule of oxygen. Park and Biggins (1964) gave the term quantasome for photosynthetic units which is equivalent to 230 chlorophyll molecules.

Chloroplast pigments : Pigments are the organic molecules that absorb light of specific wavelengths in the visible region due to presence of conjugated double bonds in their structures. The chloroplast pigments are fat soluble and are located in the lipid part of the thylakoid membranes (fret membrane). There is a wide range of chloroplastic pigments which constitute more than 5% of the total dry weight of the chloroplast. They are grouped under two main categories :

(1) **Chlorophylls** : Chlorophyll 'a' is found in all the oxygen evolving photosynthetic plants except photosynthetic bacteria. Reaction centre of photosynthesis is formed of chlorophyll a. It occurs in several spectrally distinct forms which perform distinct roles in photosynthesis (e.g., Chl a_{680} or P_{680} , Chl a_{700} or P_{700} , etc.). It directly takes part in photochemical reaction. Hence, it is termed as primary photosynthetic pigment. Other photosynthetic pigments including chlorophyll b, c, d and e; carotenoids and phycobilins are called accessory pigments because they do not directly take part in photochemical act. They absorb specific wavelengths of light and transfer energy finally to chlorophyll a through electron spin resonance.

Chlorophyll *a* is bluish-green while chlorophyll *b* is olivegreen. Both are soluble in organic solvents like alcohol, acetone etc. Chlorophyll is a green pigment because it does not absorb green light (but reflect green light) Chlorophyll *a* ($C_{55}H_{72}O_5N_4Mg$) possesses — CH_3 (methyl group), which is replaced by — CHO(an aldehyde) group in chlorophyll *b* ($C_{55}H_{70}O_6N_4Mg$). Chlorophyll molecule is made up of a squarish tetrapyrrolic ring known as head and a phytol alcohol called tail. The magnesium atom is present in the central position of tetrapyrrolic ring. The four pyrrole rings of porphyrin head are linked together by methine (CH =) groups forming a ring system.

When central Mg is replaced by Fe, the chlorophyll becomes a green pigment called 'cytochrome' which is used in photosynthesis (Photophosphorylation) and respiration both.

(2) **Carotenoids :** They are sometimes called lipochromes due to their fat soluble nature. They are lipids and found in nongreen parts of plants. Light is not necessary for their biosynthesis. Carotenoids mainly absorb violet, indigo and blue wavelength of spectrum in higher plants and transfer it to Chl. *a* and thus act as accessory pigments. They protect the chlorophyll molecules from photo-oxidation by picking up nascent oxygen and converting it into harmless molecular stage. Carotenoids can be classified into two groups namely carotenes and xanthophyll.

Photosynthesis in Higher Plants 657

(i) **Carotenes** : They are orange red in colour and have general formula $C_{40}H_{56}$. They are isolated from carrot.

UNIVERSAL BOOK DEPOT 196

They are found in all groups of plants *i.e.*, from algae to angiosperms. Some of the common carotenes are α , β , γ and δ carotene; phytotene, lycopene, neurosporene etc. The lycopene is a red pigment found in ripe tomato and red pepper fruits. The β -carotene on hydrolysis gives vitamin A, hence the carotenes are also called provitamin A. β -carotene is black yellow pigment of carrot roots.

(ii) **Xanthophylls :** They are yellow coloured carotenoid also called xanthols or carotenols. They contain oxygen also along with carbon and hydrogen and have general formula $C_{40}H_{56}O_2$.

Lutein $(C_{40}H_{56}O_2)$ a widely distributed xanthophyll which is responsible for yellow colour in autumn foliage. Fucoxanthin $(C_{40}H_{56}O_6)$ is another important xanthophyll present in Phaeophyceae (Brown algae).

(3) **Phycobilins**: These pigments are mainly found in bluegreen algae (Cyanobacteria) and red algae. These pigments have open tetrapyrrolic in structure and do not bear magnesium and phytol chain.

Blue-green algae have more quantity of phycocyanin and red algae have more phycoerythrin. Phycocyanin and phycoerythrin together form phycobilins. These water soluble pigments are thought to be associated with small granules attached with lamellae. Like carotenoids, phycobilins are accessory pigments *i.e.*, they absorb light and transfer it to chlorophyll *a*.

Nature of light : Sunlight is a type of energy called radiant energy or electromagnetic energy. This energy, according to electromagnetic wave theory (Proposed by James Clark Maxwell, 1960), travels in space as waves. The distance between the crest of two adjacent waves is called a wavelength (λ). Shorter the wavelength greater the energy.

The unit quantity of light energy in the quantum theory is called quantum (hv), whereas the same of the electromagnetic field is called photon. Solar radiation can be divided on the basis of wavelengths. Radiation of shortest wavelength belongs to cosmic rays whereas that of longest wavelength belong to radio waves. Visible light lies between wavelengths of ultra-violet and infra-red. The visible spectrum of solar radiations are primarily absorbed by carotenoids of the higher plants are violet and blue. However, out of blue and red wavelengths, blue light carry more energy.

> Shortest wavelength — Longest wavelength Maximum energy Minimum energy

Visible light : 390nm (3900Å) to 760nm (7600Å). Violet (390–430nm), blue (430–470nm), blue-green (470–500nm), green (500–580nm), yellow (580–600nm), orange (600–650nm), orange-red (650–660nm) and red (660–760nm) Far-red (700–760nm). Infra-red 760nm – 100µm. Ultraviolet 100–390nm. Solar radiations 300nm (ultraviolet) to 2600nm (infra-red).

Get More Learning Materials Here :

UNIVERSAL BOOK DEPOT 1950

658 Photosynthesis in Higher Plants

Photosynthetically active radiation (PAR) is 400–700nm. Leaves appear green because chlorophylls do not absorb green light. The same is reflected and transmitted through leaves.

Absorption and action spectra : The curve representing the light absorbed at each wavelength by pigment is called absorption spectrum. Curve showing rate of photosynthesis at different wavelengths of light is called action spectrum.

Absorption spectrum is studied with the help of spectrophotometer. The absorption spectrum of chlorophyll *a* and chlorophyll *b* indicate that these pigments mainly absorb blue and red lights. (430 nm and 662 nm for chlorophyll *a*, 455 nm and 644 nm for chlorophyll *b*). Action spectrum shows that maximum photosynthesis takes place in blue and red regions of spectrum. The first action spectrum of photosynthesis was studied by T.W. Engelmann (1882) using green alga *Spirogyra* and oxygen seeking bacteria.

In this case actual rate of photosynthesis in terms of oxygen evolution or carbon dioxide utilisation is measured as a function of wavelength.

Mechanism of photosynthesis

On the basis of discovery of Nicolas de Saussure that "The amount of O_2 released from plants is equal to the amount of CO_2 absorbed by plants", it was considered that O_2 released in photosynthesis comes from CO_2 , but Ruben proved that this concept is wrong.

In 1930, C.B. Van Niel proved that, sulphur bacteria use H_2S (in place of water) and CO_2 to synthesize carbohydrates as follows:

$$6CO_2 + 12H_2S \longrightarrow C_6H_{12}O_6 + 6H_2O + 12S$$

This led Van Niel to the postulation that in green plants, water (H_2O) is utilized in place of H_2S and O_2 is evolved in place of sulphur (S). He indicated that water is an electron donor in photosynthesis.

$$6CO_2 + 12H_2O \longrightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$$

This was confirmed by Ruben and Kamen in 1941 using *Chlorella* a green alga. They used isotopes of oxygen in water, *i.e.*, $H_2^{18}O$ instead of H_2O (normal) and noticed that liberated oxygen contains ¹⁸O of water and not of CO_2 . The overall reaction can be given as under :

$$6CO_2 + 12H_2^{-18}O \xrightarrow{\text{Light}} C_6H_{12}O_6 + 6^{18}O_2 + 6H_2O$$

During photosynthesis the O_2 in glucose comes from carbondiowater.

Modern concept of photosynthesis

Photosynthesis is an oxidation reduction process in which water is oxidised to release O_2 and CO_2 is reduced to form starch and sugars.

Scientists have shown that photosynthesis is completed in two phases.

(1) Light phase or Photochemical reactions or Light dependent reactions or Hill's reactions : During this stage energy from sunlight is absorbed and converted to chemical energy which is stored in ATP and $NADPH + H^+$.

(2) Dark phase or Chemical dark reactions or Light independent reactions or Blackman reaction or Biosynthetic phase : During this stage carbohydrates are synthesized from carbon dioxide using the energy stored in the ATP and NADPH formed in the light dependent reactions.

Evidence for light and dark reactions in photosynthesis :

(1) Physical separation of chloroplast into grana and stroma fractions : It is now possible to separate grana and stroma fractions of chloroplast. If light is given to grana fraction in presence of suitable H-acceptor and in complete absence of CO_2 , then ATP and $NADPH_2$ are produced (*i.e.*, assimilatory powers). If these assimilatory powers (ATP and $NADPH_2$) are given to stroma fraction in presence of CO_2 and absence of light, then carbohydrates are formed.

(2) Experiments with intermittent light or Discontinuous light : Rate of photosynthesis is faster in intermittent light (Alternate light and dark periods) than in continuous light. It is because light reaction is much faster than dark reaction, so in continuous light, there is accumulation of ATP and $NADPH_2$ and hence reduction in rate of photosynthesis but in discontinuous light, ATP and $NADPH_2$ formed in light are fully consumed during dark in reduction of CO_2 to carbohydrates. Accumulation of $NADPH_2$ and ATP is prevented because they are not produced during dark periods.

(3) **Temperature coefficient studies** : Blackman found that Q_{10} was greater than 2 in experiment when photosynthesis was rapid and that Q_{10} dropped from 2 often reaching unity, *i.e.*, 1 when the rate of photosynthesis was low. These results show that in photosynthesis there is a dark reaction (Q_{10} more than 2) and a photochemical or light reaction (with Q_{10} being unity).

 $Q_{10} = \frac{\text{Reaction rate of } (t+10)^{\circ}C}{\text{Reaction at } t^{\circ}C}$

🕀 www.studentbro.in

CLICK HERE

≫

Light reaction (Photochemical reactions) : Light reaction occurs in grana fraction of chloroplast and in this reaction are included those activities, which are dependent on light. Assimilatory powers (ATP and *NADPH*₂) are mainly produced in this light reaction.

Robin Hill (1939) first of all showed that if chloroplasts extracted from leaves of *Stellaria media* and *Lamium album* are suspended in a test tube containing suitable electron acceptors, *e.g.*, Potassium ferroxalate (Some plants require only this chemical) and potassium ferricyanide, oxygen is released due to photochemical splitting of water. Under these conditions, no CO_2 was consumed and no carbohydrate was produced, but light-driven reduction of the electron acceptors was accompained, by O_2 evolution.

$$\begin{array}{c} 4Fe^{3+} + 2H_2O \longleftrightarrow 4Fe^{2+} + 4H^+ + O_2 \uparrow \\ \begin{array}{c} \text{Electron} \\ \text{acceptor} \end{array} \xrightarrow[]{\text{Electron}} \\ \begin{array}{c} \text{Electron} \\ \text{oppor} \end{array} \xrightarrow[]{\text{Product}} \\ \begin{array}{c} \text{Product} \end{array} \end{array}$$

The splitting of water during photosynthesis is called photolysis. This reaction on the name of its discoverer is known as Hill reaction.

Hill reaction proves that

(1) In photosynthesis oxygen is released from water.

(2) Electrons for the reduction of CO_2 are obtained from water [*i.e.*, a reduced substance (hydrogen donor) is produced which later reduces CO_2].

Dichlorophenol indophenol is the dye used by Hill for his famous Hill reaction.

According to Arnon (1961), in this process light energy is converted to chemical energy. This energy is stored in ATP (this process of ATP formation in chloroplasts is known as photophosphorylation) and from electron acceptor NADP⁺, a substance found in all living beings NADP^{*}H is formed as hydrogen donor. Formation of hydrogen donor NADPH from electron acceptor NADP⁺ is known as photoreduction or production of reducing power NADPH.

Light phase can be explained under the following headings :

(1) Transfer of energy: When photon of light energy falls on chlorophyll molecule, one of the electrons pair from ground or singlet state passes into higher energy level called excited singlet state. It comes back to hole of chlorophyll molecule within 10⁻⁹ seconds.

This light energy absorbed by chlorophyll molecule before coming back to ground state appears as radiation energy, while that coming back from excited singlet state is called fluorescence and is temperature independent. Sometimes the electron at excited singlet state gets its spin reversed because two electrons at the same energy level cannot stay; for sometime it fails to return to its partner electron. As a result it gets trapped at a high energy level.

Photosynthesis in Higher Plants 659

UNIVERSAL

Due to little loss of energy, it stays at comparatively lower energy level (Triplet state) from excited singlet state. Now at this moment, it can change its spin and from this triplet state, it comes back to ground state again losing excess of energy in the form of radiation. This type of loss of energy is called as phosphorescence.

Fig : 4.3-2 (a) Photoexcitation of chlorophyll molecule *i.e.*, of its atoms (b) Movement of electron due to photoexcitation of pigment molecule

When electron is raised to higher energy level, it is called at second singlet state. It can lose its energy in the form of heat also. Migration of electron from excited singlet state to ground state along with the release of excess energy into radiation energy is of no importance to this process. Somehow when this excess energy is converted to chemical energy, it plays a definite constructive role in the process.

(2) Quantum yield

(i) Rate or yield of photosynthesis is measured in terms of quantum yield or O_2 evolution, which may be defined as, "Number of O_2 molecules evolved per quantum of light absorbed in photosynthesis."

(ii) Quantum requirement in photosynthesis = 8, *i.e.*, 8 quanta of light are required to evolve one mol. of O_2 .

(iii) Hence quantum yield = 1 / 8 = 0.125 (i.e., a fraction of 1) as 12%.

(3) **Emerson effect and Red drop :** R. Emerson and C.M. Lewis (1943) observed that the quantum yield of photosynthesis decreases towards the far red end of the

UNIVERSAL BOOK DEPOT 1960

660 Photosynthesis in Higher Plants

spectrum (680nm or longer). Quantum yield is the number of oxygen molecules evolved per light quantum absorbed. Since this decrease in quantum yield is observed at the far region or beyond red region of spectrum is called red drop.

Emerson *et al.* (1957) further observed that photosynthetic efficiency of light of 680*nm* or longer is increased if light of shorter wavelengths (Less than 680*nm*) is supplied simultaneously. When both short and long wavelengths were given together the quantumyield of photosynthesis was greater than the total effect when both the wavelengths were given separately. This increase in photosynthetic efficiency (or quantum yield) is known as Emerson effect or Emerson enhancement effect.

 $E = \frac{\text{Quantum yield in combined beam-Quantum yield in red beam}}{\text{Quantum yield in far red beam}}$

(4) Two pigment systems : The discovery of Emerson effect has clearly shown the existence of two distinct photochemical processes, which are believed to be associated with two different specific group of pigments.

(i) **Pigment system I or Photosystem I**: The important pigments of this system are chlorophyll *a* 670, chlorophyll *a* 683, chlorophyll *a* 695, P_{700} . Some physiologists also include carotenes and chlorophyll *b* in pigment system I. P_{700} acts as the reaction centre. Thus, this system absorbs both wavelengths shorter and longer than 680*nm*.

(ii) **Pigment system II or photosystem II**: The main pigments of this system are chlorophyll *a* 673, P_{680} , chlorophyll *b* and phycobilins. This pigment system absorbs wavelengths shorter than 680*nm* only. P_{680} acts as the reaction centre.

Pigment system I and II are involved in non-cyclic electron transport, while pigment system I is involved only in cyclic electron transport. Photosystem I generates strong reductant NADPH. Photosystem II produces a strong oxidant that forms oxygen from water.

Table : 4.3-1	Comparison	of photosystem	I and	photosystem II
---------------	------------	----------------	-------	----------------

S. No.	Photosystem 1	Photosystem II
(1)	PS I lies on the outer surface of the thylakoids.	PS II lies on the inner surface of the thylakoid.
(2)	In this system molecular oxygen is not evolved.	As the result of photolysis of water molecular oxygen is evolved.
(3)	Its reaction center is P700.	Its reaction center is P680.
(4)	It participates both in cyclic and noncyclic photophosphorylation.	It participates only in noncyclic photophosphorylation.
(5)	It receives electrons from photosystem II.	It receives electrons from photolytic dissociation of water.
(6)	It is not related with photolysis of water.	It is related with photolysis of water.

(5) Photophosphorylation : Light phase includes the interaction of two pigment systems. PS I and PS II constitute various type of pigments. Arnon showed that during light reaction not only reduced NADP is formed and oxygen is evolved but ATP is also formed. This formation of high energy phosphates (ATP) is dependent on light hence called photophosphorylation.

Photophosphorylation is of two types :

(i) **Cyclic photophosphorylation** : The system is found dominantly in bacteria. It involves only PS I. Flow of electron is cyclic. If NADP is not available then this process will occur. When the photons activate PS I, a pair of electrons are raised to a higher energy level. They are captured by primary acceptor which passes them on to ferredoxin, plastoquinone, cytochrome complex, plastocyanin and finally back to reaction centre of PS I *i.e.*, P_{700} . At each step of electron transfer, the electrons lose potential energy. Their trip down hill is caused by the transport chain to pump H^+ across the thylakoid membrane. The proton gradient, thus established is responsible for forming (2 molecules) ATP. No reduction of NADP to NADPH+ H⁺. ATP is synthesized at two steps.

Fig: 4.3-3 Cyclic photophosphorylation

(ii) Non cyclic photophosphorylation : The system is dominant in green plants. It involves both PS-I and PS-II. Flow of electrons is unidirectional. Here electrons are not cycled back and are used in the reduction of NADP to NADPH2. Here H2O is utilized and O_2 evolution occurs. In this chain high energy electrons released from 'P-680' do not return to 'P-680' but pass through pheophytin, plastoquinone, cytochrome b_6 -f complex, plastocyanin (Cu containing pigment) and then enter P-700. In this transfer of electrons from plastoquinone (PQ) to cytochrome b6-f complex, ATP is synthesized. Because in this process high energy electrons released from 'P-680' do not return to 'P-680' and ATP (1 this is called Noncyclic is formed, molecules) photophosphorylation. ATP is synthesized at only one step.

R www.studentbro.in

This non-cyclic photophosphorylation is also known as Zscheme (because of shape of path of electron-flow) and this was given by Hill and Bendall (1960). Non-cyclic photophosphorylation or Z-scheme is inhibited by CMU and DCMU.

(DCMU is a herbicide which kills the weed by inhibiting CO_2 fixation as it is a strong inhibitor of PS-II).

Fig: 4.3-4 Non cyclic photophosphorylation (Z-scheme)

Fig: 4.3-5 Final products of light reactions

Pseudocyclic photophosphorylation : Arnon and his coworker (1954) demonstrated yet another kind of photophosphorylation. They observed that even in absence of CO2 and NADP, if chlorophyll molecules are illuminated, it can produce ATP from ADP and iP (Inorganic phosphate) in presence of FMN or vit. K and oxygen. The process is thus very simple and requires no net chemical change for the formation of ATP and water. Arnon called this oxygen dependent FMN catalysed photophosphorylation or pseudocyclic photophosphorylation which involves the reduction of FMN with the production of oxygen. FMN is an auto-oxidisable hydrogen acceptor with the effect that the reduced FMN is reoxidised by oxygen. Thus the process can continue repeatedly to produce ATP.

Since this process can be continuously self repeated, it appears that a single molecule of water should be sufficient to operate pseudocyclic photophosphorylation to meet the requirement of ATP.

$$FMN + H_2O \xrightarrow{Illuminated chloroplast} FMNH_2 + \frac{1}{2}O_2$$

$$ADP + iP ATP$$

Dark phase : The pathway by which all photosynthetic eukaryotic organisms ultimately incorporate CO_2 into carbohydrate is known as carbon fixation or photosynthetic carbon reduction (PCR) cycle or dark reactions.

The dark reactions are sensitive to temperature changes, but are independent of light hence it is called dark reaction, however it depends upon the products of light reaction of photosynthesis, *i.e.*, NADP .2H and ATP.

The carbon dioxide fixation takes place in the stroma of chloroplasts because it has enzymes essential for fixation of CO_2 and synthesis of sugar.

The techniques used for studying different steps were Radioactive tracer technique using ${}^{14}C$ (Half life – 5720 years), Chromatography and Autoradiography and the material used was *Chlorella* (Cloacal alga) and *Scenedesmus* (these are microscopic, unicellular algae and can be easily maintained in laboratory).

The assimilation and reduction of CO_2 takes place in this reaction by which carbohydrate is synthesized through following three pathways :

(1) **Calvin cycle**: Calvin and Benson discovered the path of carbon in this process. This is known as C_3 cycle because CO_2 reduction is cyclic process and first stable product in this cycle is a 3-C compound (*i.e.*, 3-Phosphoglyceric acid or 3-PGA).

Calvin cycle is divided into three distinct phases : Carboxylation, Glycolytic reversal, regeneration of RuBP.

In this cycle, CO_2 acceptor molecule is RuBP or RuDP (*i.e.*, Ribulose 1, 5-biphosphate or Ribulose 1, 5-diphosphate). There occurs covalent bonding of CO_2 to RuBP and the enzyme catalyzing this reaction is RuBP-carboxylase/oxygenase (Rubisco).

As calvin cycle takes in only one carbon (as CO_2) at a time, so it takes six turns of the cycle to produce a net gain of six carbons (*i.e.*, hexose or glucose).

In this cycle, for formation of one mole of hexose sugar (Glucose), 18 ATP and 12 NADPH₂ are used.

The plants in which this pathway of CO_2 reduction occurs, are called C-3 plants.

UNIVERSAL BOOK DEPOT 196

662 Photosynthesis in Higher Plants

About 85% of plant species are C-3 plants, including cereals (e.g., barley, rice, oat, wheat), groundnut, sugarbeet, cotton, tobacco, spinach, soybean most trees and lawn grasses etc.

Fig: 4.3-6 Simplified diagram of Calvin cycle

Enzyme : (i) Phosphopentokinase, (ii) Carboxydismutase, (iii) Phosphoglyceric kinase, (iv) Triose phosphate dehydrogenase, (v) Phosphotriose isomerase, (vi) Aldolase, (vii) Phosphatase

(2) Hatch and Slack cycle (C_4 cycle) : Kortschak and Hart supplied CO_2 to the leaves of sugarcane, they found that the first stable product is a four carbon (C_4) compound oxalo acetic acid instead of 3-carbon atom compound. The detailed study of this cycle has introduced by M.D. Hatch and C.R. Slack (1966). So it is called as "Hatch and Slack cycle". The stable product in C_4 plant is a dicarboxylic substance. Hence it is called dicarboxylic acid cycle or DCA-cycle. C_4 plants are true xerophytic plants. They are adapted for hot and dry climate.

The important C_4 plants are sugarcane, maize, Sorghum, Cyperus rotundus, Digitaria brownii, Amaranthus, etc. These plants have "Kranz" (German term meaning halo or wreath) type of leaf anatomy. The vascular bundles, in C_4 leaves are surrounded by a layer of bundle sheath cells that contain large number of chloroplasts. The chloroplasts in C_4 leaves are dimorphic (Two morphologically distinct types). The chloroplasts of bundle sheath cells are larger in size and arranged centripetally. They contain starch grains but lack grana. The mesophyll cells, on the other hand, contain normal types of chloroplasts. Mesophyll and bundle sheath cells are connected by plasmodesmata. The mesophyll cells perform C_4 cycle and the cells of bundle sheath perform C_3 cycle.

CO2 taken from the atmosphere is accepted by phosphoenolpyruvic acid (PEP) present in the chloroplasts of mesophyll cells of these leaves, leading to the formation of a 4-C compound, oxaloacetic acid (OAA). This acid is converted to another 4-C acid, the malic acid which enters into the chloroplasts bundle sheath cells and there undergoes oxidative of decarboxylation yielding pyruvic acid (a 3-C compound) and CO2. CO2 released in bundle sheath cells reacts with Ribulose-1,5biphosphate (RuBP) already present in the chloroplasts of bundle sheath cells and thus Calvin cycle starts from here. Pyruvic acid reenters mesophyll cells and regenerates phosphoenol pyruvic acid. CO2 after reacting with RuBP gives rise to sugars and other carbohydrates. In C4 plants, there are 2 carboxylation reactions, first in mesophyll chloroplast and second in bundle sheath chloroplast.

🕀 www.studentbro.in

Get More Learning Materials Here :

CLICK HERE

 \gg

 C_4 plants are better photosynthesizers. There is no photorespiration in these plants. In C_4 plants, for formation of one molecule of hexose (glucose) 30 ATP and 12 NADPH₂ are required.

Characteristics of C4 cycle

 C₄ species have greater rate of CO₂ assimilation than C₃ species. This is on account of the fact that

(i) PEP carboxylase has great affinity for CO2.

(ii) C_4 plants show little photorespiration as compared to C_3 plants, resulting in higher production of dry matter.

(2) C_4 plants are more adapted to environmental stresses than C_3 plants.

(3) CO_2 fixation by C_4 plants requires more ATP than that by C_3 plants. This additional ATP is needed for conversion of pyruvic acid to phosphoenol pyruvic acid and its transport.

(4) CO_2 acceptor molecule in C_4 plants is PEP. Further, PEPcarboxylase (PEPCO) is the key enzyme (RuBP-carboxylase enzyme is negligible or absent in mesophyll chloroplast, but is present in bundle sheath chloroplast).

(3) **Crassulacean acid metabolism (CAM)** : This dark CO_2 fixation pathway proposed by Ting (1971). It operates in succulent or fleshy plants *e.g.*, *Cactus*, *Sedum*, *Kalanchoe*, *Opuntia*, *Agave*, Orchid, Pineapple and *Bryophyllum* helping them to continue photosynthesis under extremely dry condition.

The stomata of succulent plants remain closed during day and open during night to avoid water loss (Scotoactive stomata). They store CO_2 during night in the form of malic acid in presence of enzyme PEP carboxylase. The CO_2 stored during night is used in Calvin cycle during day time. Succulents refix CO_2 released during respiration and use it during photosynthesis.

This diurnal change in acidity was first discovered in crassulacean plants e.g., Bryophyllum. So it is called as crassulacean acid metabolism.

Formation of malic acid during dark is called acidification or phase-I. Release of CO_2 for actual photosynthesis during day is called deacidification or phase-II.

Fig: 4.3-9 Mechanism of CAM

Characteristics of CAM pathway

(1) There is decrease in pH during the night and increase in pH during the day.

(2) CAM plants have enzymes of both C_3 and C_4 cycle in mesophyll cells. This metabolism enable CAM plants to survive under xeric habitats. These plants have also the capability of fixing the CO_2 lost in respiration.

Photosynthesis in Higher Plants 663

(3) Malic acid is stored in the vacuoles during the night which is decarboxylated to release CO_2 during the day.

CO₂ compensation point

In photosynthesis, CO_2 is utilized in presence of light to release O_2 whereas in respiration, O_2 is taken and CO_2 is released. If light factor is saturating, there will be certain CO_2 concentration at which rate of photosynthesis is just equal to rate of respiration or photosynthesis just compensates respiration or apparent photosynthesis is nil. It is called CO_2 compensation point.

 \Box CO₂ compensation point is very low in C₄ plants, *i.e.*, 0 to 5 ppm whereas high CO₂ compensation point is found in C₃ plants, *i.e.*, 25 to 100 ppm.

Photorespiration or CO₂ Cycle

Decker and Tio (1959) reported that light induces oxidation of photosynthetic intermediates with the help of oxygen in tobacco. It is called as photorespiration. The photorespiration is defined by Krotkov (1963) as an extra input of O_2 and extra release of CO_2 by green plants is light.

Photorespiration is the uptake of O_2 and release of CO_2 in light and results from the biosynthesis of glycolate in chloroplasts and subsequent metabolism of glycolate acid in the same leaf cell. Biochemical mechanism for photorespiration is also called glycolate metabolism.

Loss of energy occurs during this process. The process of photorespiration involves the involvement of chloroplasts, peroxysomes and mitochondria. RuBP carboxylase also catalyses another reaction which interferes with the successful functioning of Calvin cycle.

Fig: 4.3-10 The biochemical pathway of photorespiration

Get More Learning Materials Here :

🕀 www.studentbro.in

UNIVERSAL BOOK DEPOT 1960

664 Photosynthesis in Higher Plants

Biochemical mechanism

(1) Ribulose-1, 5-biphosphate $\xrightarrow{O_2}$

2 Phosphoglycolic acid +3 Phosphoglyceric acid

(2) 2 Phosphoglycolic acid + $H_2O \xrightarrow{\text{Phosphatase}}$

Glycolic acid + Phosphoric acid.

(3) Glycolic acid + $O_2 \xrightarrow{\text{Glycolic acid}} \text{Glyoxylic acid} + H_2O_2$

 $2H_2O_2 \xrightarrow{Catalase} 2H_2O + O_2$

(4) Glyoxylic acid + Glutamic acid Glutamate-glyoxylate transaminase

Glycine + a-keto glutaric acid

(5) 2 Glycine + H_2O + NAD^+ -----

Serine + CO_2 + NH_3 + NADH

Glycine + Hydroxypyruvic acid → Glyceric acid

(7) Glyceric acid + ATP \rightarrow 3 phosphoglyceric acid

+ ADP + phosphate

Importance of photorespiration: Photorespiration is quite different from respiration as no ATP or NADH are produced. Moreover, the process is harmful to plants because as much as half the photosynthetically fixed carbon dioxide (in the form of RuBP) may be lost into the atmosphere through this process.

Any increase in O_2 concentration would favour the uptake of O_2 rather than CO_2 and thus, inhibit photosynthesis for this rubisco functions as RuBP oxygenase. Photorespiration is closely related to CO_2 compensation point and occurs only in those plants which have high CO_2 compensation point such as C_3 plants.

Photorespiration generally occurs in temperate plants. Few photorespiring plants are : Rice, bean, wheat, barley etc. Inhibitors of glycolic acid oxidase such as hydroxy sulphonates inhibit the process of photorespiration. Unlike usual mitochondria respiration neither reduced coenzymes are generated in photorespiration nor the oxidation of glycolate is coupled with the formation of ATP molecules. Photorespiration (C_2 cycle) is enhanced by bright light, high temperature, high oxygen and low CO_2 concentration.

Bacterial photosynthesis

Like green plants, some purple and green sulphur bacteria are capable of synthesizing their organic food in presence of light and in absence of O_2 , which is known as bacterial photosynthesis.

Van Niel was the first to point out these similarities. Oxygen is not liberated in bacteria during process of photosynthesis. Their photosynthesis is non-oxygenic. Because bacteria use H_2S in place of water (H_2O) as hydrogen donor. Photosynthetic bacteria are anaerobic. Only one type of pigment system (PSI) is found in bacteria except cyanobacteria which possess both PSI and PSII. Bacteria has two type of photosynthetic pigments. Bacteriochlorophyll and Bacterioviridin. Bacteriochlorophyll differs from Chl. *a* in having one pyrrol ring with two hydrogen.

The photosynthetic bacteria fall under three categories

(1) **Green sulphur bacteria** : It contains chlorobium chlorophyll, which absorb 720-750nm (far red light) of wavelength of light. *e.g.*, *Chlorobium*.

(2) Purple sulphur bacteria : e.g., Chromatium.

(3) **Purple non-sulphur bacteria :** e.g., Rhodospirillum, Rhodopseudomonas.

Characteristics of bacterial photosynthesis are :

 No definite chloroplasts but contain simple structures having pigments called chromatophores (term coined by Schmitz).

(2) Contain chlorobium chlorophyll or bacterio-chlorophyll.

(3) Use longer wavelengths of light (720-950nm).

(4) No utilization of H_2O (but use H_2S or other reduced organic and inorganic substances).

(5) No evolution of O_2 .

(6) Photoreductant is NADH₂ (Not NADPH₂).

(7) Only one photoact and hence one pigment system and thus one reaction centre, *i.e.*, P_{890} .

(8) Cyclic photophosphorylation is dominant.

(9) It occurs in presence of light and in absence of O_2 .

Chemosynthesis

Some forms of bacteria obtain energy by chemosynthesis. This process of carbohydrate formation in which organisms use chemical reactions to obtain energy from inorganic compounds is called chemosynthesis. Such chemoautotrophic bacteria do not require light and synthesize all organic cell requirements from CO_2 and H_2O and salts at the expense of oxidation of inorganic substances like (H_2 , NO_3^- , SO_4 or carbonate). Some examples of chemosynthesis are :

(1) **Nitrifying bacteria :** e.g., Nitrosomonas, Nitrosococcus, Nitrobacter etc.

(2) **Sulphur bacteria** : e.g., Beggiatoa, Thiothrix and Thiobacillus.

(3) **Iron bacteria :** e.g., Ferrobacillus, Leptothrix and Cladothrix.

(4) Hydrogen bacteria : e.g., Bacillus pentotrophus

(5) **Carbon bacteria :** e.g., Carboxydomonas, Bacillus oligocarbophilus.

Factors affecting photosynthesis

Blackman's law of limiting factors

F.F. Blackman (1905) proposed the law of limiting factors according to which 'when process is conditioned to its rapidity by a number of factors, the rate of process is limited by the pace of the slowest factor'. CO_2 is usually a limiting factor in photosynthesis under field conditions particularly on clear summer days under adequate water supply.

Blackman's law of limiting factor is modification of Liebig's law of minimum, which states that rate of process controlled by several factors is only as rapid as the slowest factor permits. Theory of three cardinal points was given by Sachs in 1860. According to this concept, there is minimum, optimum and maximum for each factor. For every factor, there is a minimum value when photosynthesis starts, an optimum value showing highest rate and a maximum value, above which photosynthesis fails to take place.

Factors : The rate of photosynthetic process is affected by several external (Environmental) and internal factors.

External factors

(1) **Light**: The ultimate source of light for photosynthesis in green plants is solar radiation, which moves in the form of electromagnetic waves. Out of the total solar energy reaching to the earth about 2% is used in photosynthesis and about 10% is used in other metabolic activities. Light varies in intensity, quality (Wavelength) and duration. The effect of light on photosynthesis can be studied under these three headings.

(i) **Light intensity**: The total light perceived by a plant depends on its general form (*viz.*, height, size of leaves, etc.) and arrangement of leaves. Of the total light falling on a leaf, about 80% is absorbed, 10% is reflected and 10% is transmitted.

In general, rate of photosynthesis is more in intense light than diffused light. (Upto 10% light is utilized in sugarcane, *i.e.*, Most efficient converter).

Another photosynthetic superstar of field growing plants is Oenothera claviformis (Winter evening-primrose), which utilizes about 8% light.

However, this light intensity varies from plant to plant, e.g., more in heliophytes (sun loving plants) and less in sciophytes (shade loving plants). For a complete plant, rate of photosynthesis increases with increase in light intensity, except very high light intensity where 'Solarization' phenomenon occurs, *i.e.*, photo-oxidation of different cellular components including chlorophyll occurs.

It also affects the opening and closing of stomata thereby affecting the gaseous exchange. The value of light saturation at which further increase is not accompanied by an increase in CO_2 uptake is called light saturation point.

(ii) **Light quality**: Photosynthetic pigments absorb visible part of the radiation *i.e.*, $380m\mu$ to $760m\mu$. For example, chlorophyll absorbs blue and red light. Usually plants show high rate of photosynthesis in the blue and red light. Maximum photosynthesis has been observed in red light than in blue light. The green light has minimum effect. On the other hand, red algae shows maximum photosynthesis in green light and brown algae in blue light.

(iii) **Duration of light :** Longer duration of light period favours photosynthesis. Generally, if the plants get 10 to 12*hrs* light per day it favours good photosynthesis. Plants can actively exhibit photosynthesis under continuous light without being damaged. Rate of photosynthesis is independent of duration of light.

Photosynthesis in Higher Plants 665

UNIVERSAL BOOK DEPOT 1968

(2) **Temperature** : The optimum temperature for photosynthesis is 20 to $35^{\circ}C$. If the temperature is increased too high, the rate of photosynthesis is also reduced by time factor which is due to denaturation of enzymes involved in the process. Photosynthesis occurs in some conifers at high altitudes at – $35^{\circ}C$. Some algae in hot springs can undergo photosynthesis even at $75^{\circ}C$.

(3) **Carbon dioxide** : Carbon dioxide present in the atmosphere is about 0.032% by volume and it is really a low concentration which acts as limiting factor in nature. If we increase the amount of CO_2 under laboratory conditions and if the light and temperature are not the limiting factors, the rate of photosynthesis increases. This increase is observed upto 1% of CO_2 concentration. At the same time very high concentration of CO_2 becomes toxic to plants and inhibits photosynthesis.

(4) Water : Water is an essential raw material in photosynthesis. This rarely, acts as a limiting factor because less than 1% of the water absorbed by a plant is used in photosynthesis. However, lowering of photosynthesis has been observed if the plants are inadequately supplied with water.

(5) **Oxygen** : Excess of O_2 may become inhibitory for the process. Enhanced supply of O_2 increases the rate of respiration simultaneously decreasing the rate of photosynthesis by the common intermediate substances. The concentration for oxygen in the atmosphere is about 21% by volume and it seldom fluctuates. O_2 is not a limiting factor of photosynthesis. An increase in oxygen concentration decreases photosynthesis and the phenomenon is called Warburg effect. (Reported by German scientist Warburg (1920) in *Chlorella* algae).

This is due to competitive inhibition of RuBP-carboxylase by increased O_2 levels, *i.e.*, O_2 competes for active sites of RuBP-carboxylase enzyme with CO_2 . The explanation of this problem lies in the phenomenon of photorespiration. If the amount of oxygen in the atmosphere decreases then photosynthesis will increase in C_3 cycle and no change in C_4 cycle.

(6) **Pollutants and Inhibitors :** The oxides of nitrogen and hydrocarbons present in smoke react to form peroxyacetyl nitrate (PAN) and ozone. PAN is known to inhibit Hill reaction. Diquat and Paraquat (Commonly called as Viologens) block the transfer of electrons between Q and PQ in PS. II. Other inhibitors of photosynthesis are monouron or CMU (Chlorophenyl dimethyl urea) diuron or DCMU (Dichlorophenyl dimethyl urea), bromocil and atrazine etc. Which have the same mechanism of action as that of viologens.

At low light intensities potassium cyanide appears to have no inhibiting effect on photosynthesis.

(7) **Minerals** : Presence of Mn^{++} and Cl^{-} is essential for smooth operation of light reactions (Photolysis of water/evolution of oxygen) Mg^{++} , Cu^{++} and Fe^{++} ions are important for synthesis of chlorophyll.

Internal factors

 Protoplasmic factors : There is some unknown factor which affects the rate of photosynthesis.

These factors affect the dark reactions. The decline in the rate of photosynthesis at temperature above $30^{\circ}C$ or at strong light intensities in many plants suggests the enzymatic nature of this unknown factor.

Get More Learning Materials Here :

UNIVERSAL

666 Photosynthesis in Higher Plants

(2) **Chlorophyll content** : Chlorophyll is an essential internal factor for photosynthesis. The amount of CO_2 fixed by a gram of chlorophyll in an hour is called photosynthetic number or assimilation number. It is usually constant for a plant species but rarely it varies. The assimilation number of variegated variety of a species was found to be higher than the green leaves variety.

(3) Accumulation of end products : Accumulation of food in the chloroplasts reduces the rate of photosynthesis.

(4) Structure of leaves : The amount of CO_2 that reaches the chloroplast depends on structural features of the leaves like the size, position and behaviour of the stomata and the amount of intercellular spaces. Some other characters like thickness of cuticle, epidermis, presence of epidermal hairs, amount of mesophyll tissue, etc., influence the intensity and quality of light reaching in the chloroplast.

E Photosynthetic materials : 264 gm of CO_2 and 216 gm of water give rise to 108 gm of water, 192 gm of O_2 and 180 gm of glucose.

Rubisco : Rubisco constitutes 16% of chloroplast protein. It is the most abundant protein on this planet.

 \swarrow Willmott's bubbler is used to measure rate of O_2 evolution or rate of photosynthesis.

Z T.W. Engelmann (1882) experimentally verified that in monochromatic lights, photosynthesis is maximum in red light.

 MADP (Nicotinamide adenine dinucleotide phosphate) was earlier called as TPN (Triphosphopyridine nucleotide),

In green plants the hydrogen acceptor is NADP, but in bacteria it is NAD.

S No Emerson effect is seen in bacteria.

Cytochromes : The terms was coined by Keilin (1925) though the biochemicals were discovered by Mac Munn (1866).

E Cytochrome proteins serving as electron carriers in respiration, photosynthesis and other oxidative reduction reactions.

Intensity of light can be measured by Luxmeter.

Isolated chlorophyll 'a' in pure form emits red colour. It is called fluoresence.

In angiosperms, synthesis of chlorophyll occurs in presence of light.

E The precursor of chlorophyll is chlorophyllide.

Chlorophyll term was coined by Pelletier and Coventou (1818) who also discovered the pigment.

E Hydrilla plant is used in an experiment commonly performed in laboratory in demonstrate evolution of O_2 in photosynthesis.

(c) mesuey (d) bo

Get More Learning Materials Here :

5.

UNIVERSAL BOOK DEPOT 1960

- The first important biological investigation which led to the 12. conclusion that plant makes its substance from water and not from soil was carried out by
 - (a) Lamarck (b) De Vries
 - (c) Van Helmont (d) Darwin
- Early studies on the pathway of CO2 fixation in plants were 13. made during 1940s in
 - (a) Unicellular green algae by Calvin
 - (b) Isolated chloroplast of spinach by Hill
 - (c) Mesophyll cells of variegated leaves by Arnon
 - (d) Bundle sheath cells of maize by Hatch and Slack
- 14. Who proposed the cycle of events leading to the fixation of CO2 in mesophyll and its reduction in bundle sheath
 - (a) Emerson (b) Melvin Calvin
 - (c) Hatch and Slack (d) Hill and Bendall
- 15. The scientist, who proved that bacteria use H_2S gas and CO2 to synthesize carbohydrate, is [NCERT]
 - (a) Van Niel (b) Ruben
 - (c) Jean Senebier (d) Julius Robert Mayer
- Emerson's enhancement effect and Red drop have been 16. instrumental in the discovery of [NEET (Phase-I) 2016]
 - (a) Photophosphorylation and non-cyclic electron transport
 - (b) Two photosystems operating simultaneously
 - (c) Photophosphorylation and cyclic electron transport
 - (d) Oxidative phosphorylation

Experiments

- What plant is used in an experiment commonly performed 1. in laboratory in demonstrate evolution of oxygen in photosynthesis [RPMT 1997] (a) Sunflower (b) Hydrilla
 - (c) Croton (d) Balsam
- 2. Engelmann's experiment with Spirogyra demonstrated that
 - [BVP 2003]
 - (a) The full spectrum of sunlight is needed for photosynthesis
 - (b) Only red wavelengths are effective in causing photosynthesis
 - (c) Only blue wavelengths are effective
 - (d) Both blue and red wavelengths are effective
- 3. Two plants A and B are supplied with CO_2 with H_2O^{18} and CO_2^{18} with H_2O respectively which of the following plant releases O18 type oxygen in photosynthesis [CPMT 2000]
 - (a) A plant (b) B plant
 - (c) Both (a) and (b) (d) First (a) and then (b)
- Isotopes popularly known to have been used in the study of 4. photosynthesis are [MH CET 2007] Or

Which of the following isotope of carbon was used by Calvin to trace the path of carbon in photosynthesis [CPMT 1995]

(a)	C ¹⁴ and O ¹⁸	(b) C ¹¹ and C ³²
(a)	C- and O.	(b) C^{11} and C^{32}

(d) P32 and C15 (c) C¹⁶ and N¹⁵

The given diagram represents an experiment with isolated chloroplasts. The chloroplasts were first made acidic by soaking them in a solution at pH 4. After the thylakoid space reached pH 4, the chloroplast were transferred to a basic solution at pH 8. The chloroplasts are then placed in the dark. Which of these compounds would you expect to be produced [NCERT]

(c) NAD (d) ATP

- 6. Path of carbon in photosynthesis was found by using
 - [Kerala CET 2002]
 - (a) Centrifugation (b) Radio isotopes (c) Fractionation (d) Chromatography
- 7. Persons who received Nobel Prizes for their work with green plants are
 - (a) Calvin and Waston (b) Calvin and Borlang
 - (c) Beadle and Tatum (d) Flemming and Waksman
- 8. Which of the following with respect to early experiments of photosynthesis is wrongly matched [Kerala PMT 2012]
 - (a) Joseph Priestley Showed that plants release O2 (b) Jan Ingenhousz Showed that sunlight is essential for photosynthesis (c) Julius von Sachs Proved that plants produce glucose when they grow (d) T.W. Engelmann Showed that the green substance is located within special bodies in plant
 - (e) Cornelius van Net -Showed that hydrogen reduces CO₂ to carbohydrates
- The path of CO2 in the dark reaction of photosynthesis 9. was successfully traced by the use of the following or The dark reaction is traced by [BHU 1992]
 - (a) O_2^{18} (b) C14 O2 (c) P³⁶
 - (d) X-rays

10. Algae used by Calvin and associates for photosynthetic research is [RPMT 2002]

Or

The experimental material that has largely been responsible for making rapid advances in research on photosynthesis is [RPMT 2002]

Or

- Warburg studied his effect on
 - (b) Chlamydomonas
 - (d) All the above

Get More Learning Materials Here :

CLICK HERE

(a) Chlorella

(c) Volvox

11.				otosynthesis comes from oved by [MP PMT 1995]	6.	Which of the following represents the correct molecular formula of chlorophyll-b [RPMT 2005]
	ALC: NO.	uben and Kamen		Robert Mayer		
		lalvin Calvin		Blackman		
12.	The fi	rst experiment on ph	otosynth	esis in flashing light were		(c) $C_{55}H_{72}O_4N_4Mg$ (d) $C_{55}H_{70}O_5N_4Mg$
	carrie	d out by		[AFMC 2006]		(e) $C_{55}H_{70}O_6N_4Mg$
		. F. Blackman			7.	Solar energy is converted into ATP in
	(b) R	obert Emerson and A	Arnold			Or
		lelvin Calvin				Light energy is converted into chemical energy in the
	The second	lobert Hill				presence of [MP PMT 1994]
13.		experiment shows		[KCET 2001]		(a) Mitochondria (b) Chloroplasts
		Inequal transpiration				(c) Ribosomes (d) Peroxisomes
		lelation between tran	-		8.	Which process is related with photosynthesis [CPMT 1998]
		O_2 is required for ph				(a) Phosphorylation (b) Translation
Warman and	(a) C	Chlorophyll is essentia	a for pho	losynthesis		(c) Transcription (d) None of these
anized loss		Photosynthe	etic app	paratus	9.	Which of the following equation can be more appropriate
1.				yellowing in leaves and		for photosynthesis [NCERT;
				is called as [BHU 1999]		KCET 1994; Kerala PMT 2004, 06]
		tiolation		Chlorosis		(a) $6CO_2 + 6H_2O \xrightarrow{\text{Light}} C_2H_{12}O_6 + 6O_2$
	1.65 1. 50	Dechlorosis	10000	Dark effect		
2.	The n	nost vital process for	the existe	ence of life on earth is [KCET 1994]		(b) $6CO_2 + 12H_2O \xrightarrow{\text{Light}} C_6H_{12}O_6 + 6H_2O + 6O_2$
	(a) (Communication in an	imals	[RCE1 1994]		(c) $12CO_2 + 6H_2O \xrightarrow{\text{Light}} 2C_6H_{12}O_6 + 6O_2$
		Photosynthesis by pla				
		Reproduction in plant		imals		(d) None of the above
		Respiration in animals		Corrige and the	10.	
3.				the correct combination		(a) Surface of cristae
J.		the options given	choose	the concer comonidation		(b) Surface of plasma membrane
		Column – I		Column – II		(c) Surface of nuclear membrane
	A.	Visible light	1.	0.1 to 1 nm		(d) Surface of thylakoids
		Ultraviolet	2.	400 to 700 nm	11.	The full expansion of NADP is [RPMT 1997]
	B.					(a) Nicotinamide adenine diphosphate
	C.	X-Rays	3.	Longer than 740 nm		(b) Nicotinamide adenosine diphosphate
	D.	Infrared	4.	100 to 400 nm		(c) Nicotinamide adenine dinucleotide phosphate
	Nº LINE	Successful the second	5.	< 0.1 nm		
	(-)	A 1 B 2C 4 D	5 (b)	[Kerala PMT 2007] A-3,B-2,C-1,D-5		(d) Nicotinamide adenosine dinucleotide phosphate
					12.	
				A-2, B-4, C-1, D-3		(A) Emerson effect (a) C_4 cycle
		A - 5, B - 4, C - 3, D				(B) Hill reaction (b) Photolysis
4.				are needed by a green		(C) Calvin's cycle (c) C_3 cycle
		to produce one cules of CO_2	molecul	e of hexose/ reduce 6		(D) Hatch and Slack cycle (d) Photosystem-I and II
	(a) ((b)	12		[RPMT 1997]
	(c) 2			One only		(a) Aa, Bb, Cc, Dd (b) Aa, Bc, Cd, Db
5.		irst event in photosyı		[JIPMER 2002;		(c) Ac, Bd, Ca, Db (d) Ad, Bb, Cc, Da
	The I	not event in photosyl		To se supression and days	121-221	C

The first event in photosynthesis is [] CBSE PMT 2000; AIEEE Pharmacy 2004] 13. (a) Synthesis of ATP

- (b) Photoexcitation of chlorophyll and ejection of electron
- (c) Photolysis of water
- (d) Release of oxygen

>>

(c) Proteins

absence of which of the following

(a) ATP

🕀 www.studentbro.in

[DPMT 2004]

Get More Learning Materials Here : 📕

CLICK HERE

(A)	Emerson effect	(a)	C ₄ cycle
(B)	Hill reaction	(b)	Photolysis
(C)	Calvin's cycle	(c)	C_3 cycle
(D)	Hatch and Slack cycle	(d)	Photosystem–I and II [RPMT 1997]
(a)	Aa, Bb, Cc, Dd	(b)	Aa, Bc, Cd, Db
(c)	Ac, Bd, Ca, Db	(d)	Ad, Bb, Cc, Da
			oids in culture medium not produce hexose due to

(b) Enzyme

(d) Hill reagent

14. Match the sites in column I with the processes in column II

	Column I		Column II
A.	Grana of chloroplast	1.	Kreb's cycle
Β.	Stroma of chloroplast	2.	Light reaction
C.	Cytoplasm	3.	Dark reaction
D.	Mitochondrial matrix	4.	Glycolysis

[RPMT 1995; MP PMT 2000;

Kerala PMT 2004]

(a) A-4, B-3, C-2, D-1 (b) A-1, B-2, C-4, D-3

and choose the servest ---- 1'

(c) A-2, B-1, C-3, D-4 (d) A-3, B-4, C-1, D-2

(e) A-2, B-3, C-4, D-1

15. 85–90% of all photosynthesis of the world is carried out by [AMU (Med.) 2009]

Or

The maximum evolution of oxygen is by greatest producers of organic matter

- (a) Shrubs
- (b) Herbs
- (c) Oceanic algae/Phytoplanktons
- (d) Trees with large branches
- See the following diagram and identify X and Y with their functions [NCERT]

1	X		and the states	Y
1.5	Structure	Function	Structure	Function
(a)	Grana	CO ₂ fixation	Lamellae	Photolysis of water
(b)	Stroma	Photolysis	Grana	CO ₂ fixation
(c)	Grana	CO ₂ fixation	Stroma	Photolysis of water
(d)	Grana	Photolysis of water	Stroma	CO ₂ fixation

In photosynthesis, energy from light reaction to dark reaction is transferred in the form of [CBSE PMT 2002]
 (a) ADP
 (b) ATP

(c) RUDP

(d) Chlorophyll

[Odisha JEE 2009]

(b) Phytochrome

 The synthesis of ATP in photosynthesis and respiration is essentially an oxidation-reduction process involving removal of energy from [CBSE PMT 1992; BHU 1994] Or

Which one is always transferred in redox reaction

(a) Oxygen

- (c) Cytochrome
 - ytochrome (d) Electrons

In photosynthesis, plants [AFMC 2003; MP PMT 2004]
 (a) Absorb O₂ and release CO₂

- (b) Absorb CO2 and release O2
- (c) Absorb NH_3 and release N_2
- (d) Absorb N_2 and release NH_3

Photosynthesis in Higher Plants 669Wavelength of green light is(a) $400 - 450 m\mu$ (b) $500 - 550 m\mu$ (c) $660 - 720 m\mu$ (d) $720 - 800 m\mu$

IVERSAL OK DEPOT 196

- **21.** Chemosynthesis and photosynthesis are alike in that both
 - (a) Are associated with heterotroph
 - (b) Require sunlight as an energy source
 - (c) Methods of autotrophic nutrition
 - (d) Occur in tracheophytes

20.

24.

- 22. Ribulose diphosphate carboxylase oxygenase is located in
 - (a) Mitochondria (b) Chloroplasts
 - (c) Peroxisomes (d) Golgi bodies
- 23. The percentage of light energy utilized for photosynthesis by higher plants is [Odisha JEE 2008]
 - (a) 100% (b) 50% (c) 10% (d) 1 to 2%
 - (c) 10% (d) 1 to 2% During photosynthesis
 - CPMT 1998, 2003; Pb. PMT 2000, 03; RPMT 2005]
 - (a) Both CO_2 and water get oxidized
 - (b) Both CO2 and water get reduced
 - (c) Water is reduced and CO₂ is oxidized
 - (d) Carbon dioxide get reduced, water get oxidised and ATP is formed
- 25. Intensity of light can be measured by
 - (a) Luxmeter (b) Wilmott's bubbler
 - (c) Ganong's potometer (d) Farmer's potometer
- 26. Assimilatory power refers to
 - (a) Generation of ATP and NADPH₂
 - (b) Reduction of CO₂
 - (c) Splitting of water
 - (d) Disintegration of plastids
- 27. Grana refers to
 - (a) Stacks of thylakoids in plastids of higher plants
 - (b) A constant in quantum equation
 - (c) Glycolysis of glucose
 - (d) Bye product of photosynthesis
- 28. Intact chloroplast from green leaves can be isolated by
 - (a) Acetone (b) Ethanol
 - (c) Alcohol (d) Sugar solution
- 29. Dimorphic chloroplasts are present in

[MHCET 2002; WB JEE 2008, 10]

[AFMC 1994]

(a) Sugarcane(C_4) (b)	Cotton	
----------------------------	--------	--

- (c) Pea (d) Mango
- Phenomenon which converts light energy into chemical energy is [AFMC 2005]
 - (a) Respiration (b) Photosynthesis
 - (c) Transpiration (d) None of these
- For the process of photosynthesis all except one of the following items are essential. Point out the exception
 - (a) Water, minerals
 - (b) Light, chlorophyll
 - (c) CO_2 , optimum temperature
 - (d) Oxygen, sucrose

CLICK HERE

2.	Plan	ts are known as pur		r due to process of PMT 1996; WB JEE 2008]	5
	(a)	Respiration	(b)	Photosynthesis	
	1.	Transpiration	0.000	Desiccation	
3.	In t	he overall process	of photo	synthesis, the number of	
	CO	2, water, sugar and	O2 mole	cules utilized and produced	
	is			[AMU (Med.) 2012]	
	(a)		1.1	13	
	(c)			31	
4.		is formed in all of			
		Burning of sugar		Respiration in plants	
	and the second second		olants (d)	On heating of limestone	
5.	-	intasomes contain			
				230 chlorophyll molecules	
				300 chlorophyll molecules	
6.	Whi The is	ich one of the follow common immediat	ving is en e source (ergy currency of the cell or of energy in cellular activity [MH CET 2000]	
		Phosphate	(b)	ATP	6
	JA225	ADP		AMP	
7.			The second se	ynthesis of organic matter),	
		green plants need o			
		Light		Chlorophyll	
			(1)	A11 5 41	
	(C)	CO_2 and water	(a)	All of these	
-	(c)	And the second statement of th	-	Contraction of the second s	
		Light readinganese and Chlorin CBS	ction/Pi ne is requi SE PMT 2	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012;	
	Mar (a) (b)	Light readinganese and Chlorin CBS CBSE PMT (N Nucleic acid synthe Plant cell wall form	ction/Pi ne is requi SE PMT 2 Mains) 201 esis eation	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015]	
1	Mar (a) (b) (c)	Light read nganese and Chlorin CBS CBSE PMT (M Nucleic acid synthe Plant cell wall form Photolysis of water	ction/Pi ne is requi SE PMT 2 Mains) 20 esis esis nation during pl	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015]	
	Mar (a) (b) (c) (d)	Light read nganese and Chlorin CBS CBSE PMT (M Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe	ction/Pi ne is requi SE PMT 2 Mains) 20 esis eation e during ph esis	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015]	
	Mar (a) (b) (c) (d)	Light read nganese and Chlorin CBS CBSE PMT (M Nucleic acid synthe Plant cell wall form Photolysis of water	ction/Pi ne is requi SE PMT 2 Mains) 20 Mains) 20 Mains) 20 Mains	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis	
	Mar (a) (b) (c) (d) Stro	Light read nganese and Chlorin CBS CBSE PMT (M Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla	ction/Pi ne is requi SE PMT 20 Mains) 20 Mains (Mains) 20 Mains (Ma	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains SE PMT 2009; AIPMT 2015]	
	(a) (b) (c) (d) Stro (a)	Light read nganese and Chlorin CBS CBSE PMT (M Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla Light-independent	ction/Pi ne is requi SE PMT 2 Mains) 20 Mains) 20 Mains (Mains) 20 Mai	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains iE PMT 2009; AIPMT 2015] enzymes	
1.	(a) (b) (c) (d) Stro (a) (b)	Light read nganese and Chlorin CBS CBSE PMT (M Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla Light-independent re	ction/Pi ne is requi SE PMT 2 Mains) 20 Mains) 20 Mains (Mains) 20 Mai	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains iE PMT 2009; AIPMT 2015] enzymes	
	(a) (b) (c) (d) Stro (a) (b) (c)	Light read nganese and Chlorin CBS CBSE PMT (M Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla Light-independent re Ribosomes	ction/Pi ne is requi SE PMT 2 Mains) 20 Mains) 20 Mains (Mains) 20 Mai	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains iE PMT 2009; AIPMT 2015] enzymes	
2.	(a) (b) (c) (d) Stro (a) (b) (c) (d)	Light read nganese and Chlorin CBS CBSE PMT (M Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla Light-independent re Ribosomes Chlorophyll	ction/Pi ne is requi SE PMT 20 Mains) 20 esis nation during pl esis station during pl esis station cluss reaction en	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains 5E PMT 2009; AIPMT 2015] enzymes zymes	
2.	Mar (a) (b) (c) (d) Stro (a) (b) (c) (d) Nut	Light read nganese and Chlorin CBS CBSE PMT (N Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla Light-independent Light-dependent re Ribosomes Chlorophyll mber of thylakoids i	ction/Pi ne is requi SE PMT 2 Mains) 20 Mains) 20 Mains (Mains) 20 Mai	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains BE PMT 2009; AIPMT 2015] enzymes izymes	
2.	Man (a) (b) (c) (d) (c) (d) (c) (d) Nun (a)	Light read nganese and Chlorin CBS CBSE PMT (M Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla Light-independent Light-dependent ra Ribosomes Chlorophyll mber of thylakoids i 5-10	ction/Pi ne is requi SE PMT 24 Mains) 201 esis nation during ph esis sats of high [CBS reaction en eaction en n a granum (b)	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains E PMT 2009; AIPMT 2015] enzymes zymes m is [AFMC 2008]) 2-100	
2.	Man (a) (b) (c) (d) (c) (d) (b) (c) (d) Nun (a) (c) Con	Light read nganese and Chlorin CBS CBSE PMT (N Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla Light-independent Light-dependent re Ribosomes Chlorophyll mber of thylakoids i	ction/Pi ne is requi SE PMT 2 Mains) 20 Mains) 20 esis teation during pl esis teation during pl esis teation class reaction en teation en teati	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains BE PMT 2009; AIPMT 2015] enzymes izymes	
2.	Man (a) (b) (c) (d) (c) (d) (b) (c) (d) Nun (a) (c) Con	Light read nganese and Chlorin CBS CBSE PMT (M Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla Light-independent re Ribosomes Chlorophyll mber of thylakoids i 5-10 100-150 nsider the follow otosynthesis	ction/Pi ne is requi SE PMT 24 Mains) 201 esis nation during pl esis tests of high [CBS reaction en action en n a granum (b) (d)	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains E PMT 2009; AIPMT 2015] enzymes izymes m is [AFMC 2008]) 2-100) 150-200	
2.	Mar (a) (b) (c) (d) (c) (d) (c) (d) Nur (a) (c) (c) (c) (d) Nur (a) (c) (c)	Light read nganese and Chlorin CBS CBSE PMT (M Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla Light-independent ra Ribosomes Chlorophyll mber of thylakoids i 5-10 100-150 nsider the follow otosynthesis The first carbon di In C ₃ plants, the during dark reactio	ction/Pi ne is requi SE PMT 2 Mains) 201 esis action during ph esis action en (CBS reaction en action en (b) (d) ving state oxide acco first stable on is RuB	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains E PMT 2009; AIPMT 2015] enzymes zymes m is<	
2.	Mar (a) (b) (c) (d) (c) (d) (c) (d) Nur (a) (c) Cor pho A. B. C.	Light read nganese and Chlorin CBS CBSE PMT (M Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla Light-independent re Ribosomes Chlorophyll mber of thylakoids i 5-10 100-150 nsider the follow otosynthesis The first carbon di In C ₃ plants, the during dark reactio Cyclic photophosp ATP	ction/Pi ne is requi SE PMT 24 Mains) 201 esis ation during pl esis sts of high [CBS reaction en action en n a granum (b) (d) ving state oxide according first stable on is <i>RuB</i> phorylation	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains E PMT 2009; AIPMT 2015] enzymes zymes m is<	
2.	Mar (a) (b) (c) (d) (c) (d) (c) (d) Nur (a) (c) (c) (d) Nur (a) (c) Cor pho A. B. C. D.	Light read nganese and Chlorin CBS CBSE PMT (N Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla Light-independent re Ribosomes Chlorophyll mber of thylakoids i 5-10 100-150 nsider the follow otosynthesis The first carbon di In C ₃ plants, the during dark reactio Cyclic photophosp ATP Oxygen which is 1 from water	ction/Pi ne is requi SE PMT 20 Mains) 20 esis nation during ph esis ats of high (CBS reaction en eaction en (b) (d) ving state oxide according first stable on is RuB ohorylation iberated d	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains SE PMT 2009; AIPMT 2015] enzymes zymes m is<	
	Man (a) (b) (c) (d) (c) (d) (c) (d) (c) (d) Nun (a) (c) Con pho A. B. C. D. Of	Light read nganese and Chlorin CBS CBSE PMT (N Nucleic acid synthe Plant cell wall form Photolysis of water Chlorophyll synthe oma in the chloropla Light-independent re Ribosomes Chlorophyll mber of thylakoids i 5-10 100-150 nsider the follow otosynthesis The first carbon di In C ₃ plants, the during dark reactio Cyclic photophosp ATP Oxygen which is 1 from water the above statemen	ction/Pi ne is requi SE PMT 20 Mains) 20 Mains) 20 esis tests tests tests tests tests of high (CBS reaction en eaction en the a granum (b) (d) ving state oxide according first stable on is RuB ohorylation iberated d ts	gments red in [NCERT; BHU 2005; 009; Kerala PMT 2009, 10; 11; CBSE PMT (Pre.) 2012; AIPMT 2015] hotosynthesis her plant contains E PMT 2009; AIPMT 2015] enzymes zymes m is<	

	roles in the photolysis of wat	er
C)) In cyclic photophosphorylati (as there is no photolysis of	
	not produced	
Of t	these statements given above	[Kerala PMT 2008]
(a)) A is true, but B and C are fal	se
(b)) A and B are false, but C is tr	ue
(c)	B is true, but A and C are fal	se
(d)) A and B are true, but C is fal	se
(e)) A and C are true, but B is fal	se
Cor	onsider the following statement	s regarding photosynthesis
(A)	 ATP formation during ph photophosphorylation 	otosynthesis is termed as
(B)	8) Kranz anatomy pertains to le	eaf
(C)	C) Reduction of NADP⁺ to Calvin cycle	NADPH occurs during
(D)	 In a chlorophyll molecule phytol tail 	magnesium is present in
Of	f the above statements	[Kerala PMT 2008]
(a)	(A) and (B) are correct	
(b)) (C) and (D) are correct	
(c)) (A) and (C) are correct	
(d)	I) (A) and (D) are correct	
(e)	e) (B) and (C) are correct	
Wh	hich pigment of the plant tal	kes part in light reaction of
pot	otosynthesis	[MHCET 2002
	Odi	sha JEE 2009; CPMT 2010
	Or	
Wh	hich pigment is present univer	
		[MP PMT 1999]
1915) Chl-a
) Phycoxanthin
Phe	hotosynthetic pigments in ch	loroplast are embedded in

Consider the following statements

radiation (PAR)

- sis
 - as

(A) The portion of the spectrum between 500nm and 800nm is also referred to as photosynthetically active

(B) Magnesium, calcium and chloride ions play prominent

- iring
- t in

008]

(a) Thylakoids

(a) Chlorophyll 'a'

(c) Matrix

n of 002;

010]

- 999]
- d in
- [CBSE PMT 1991] membrane of
 - (b) Photoglobin
 - (d) Envelope of chloroplast
- The visible portion of light spectrum useful in photosynthesis [MHCET 2015] is referred to as
 - (a) RFLP (b) PAR (c) VAM
 - (d) VNTR
- Which of the following pigment is yellow in colour
 - (b) Chlorophyll 'b'
 - (d) Xanthophyll (c) Carotene

Get More Learning Materials Here :

Which of the following is correctly labelled for the given figure [AIIMS 2012]

- (a) A : PS II; B : PS I; C : e⁻acceptor; D : LHC
- (b) A : LHC; B : e⁻acceptor; C : PS I; D : PS II
- (c) A : PS I; B : PS II; C : e⁻acceptor; D : LHC

(d) A : e⁻acceptor; B : LHC; C : PS II; D : PS I

 Which of the following wavelength occur in red part of the spectrum

(a)	470 nm	(b)	390 nm
(c)	680 nm	(d)	830 nm

 Which of the following statement is true with regard to the light reaction of photosynthetic mechanism in plants

[Kerala PMT 2006]

- (a) Chlorophyll A occurs with peak absoption at 680 nm in photosystem I and at 700 nm in photosystem II.
- (b) Magnesium and sodium ions are associated with photolysis of water molecules.
- (c) O2 is evolved during cyclic photophosphorylation.
- (d) Photosystems I and II are both involved in non-cyclic photophosphorylation
- (e) Both ATP and NADPH₂ are formed during cyclic photophosphorylation
- 14. Excitation of chlorophyll due to light is a [BHU 2012]
 - (a) Photooxidation reaction (b) Endergonic reaction
 - (c) Thermochemical reaction(d) Photochemical reaction
- The given diagram indicates the movement of substances into in and out of a chloroplast

What do labels 1 to 4 represent

6 L.	1	2	3	4
(a)	Sugar	H ₂ O	ATP	O2
(b)	H ₂ O	O ₂	CO ₂	Sugar
(c)	CO ₂	H ₂ O	Sugars	02
(d)	CO ₂	ATP	H ₂ O	Starch

Photosynthesis in Higher Plants 671

16. Solarization is

- (a) Formation of chlorophyll
- (b) Destruction of chlorophyll
- (c) Utilisation of sunlight
- (d) Effects of solar light
- 17. Which statement about photosynthesis is false [KCET 2009]
 - (a) The electron carriers involved in photophosphorylation are located on the thylakoid membranes
 - (b) Photosynthesis is a redox process in which water is oxidised and carbon dioxide is reduced
 - (c) The enzymes required for carbon fixation are located only in the grana of chloroplasts
 - (d) In green plants, both PS-I and PS-II are required for the formation of NADPH + H⁺
- Which one of the following is not true about the light reactions of photosynthesis [Kerala PMT 2009]
 - (a) Light energy provides energy for the photolysis of water through excitation of the reaction centre of PS II
 - (b) The flow of electrons from water to NADP in non-cyclic electron transport produces one ATP
 - (c) Reactions of the two photosystems are needed for the reduction of NADP
 - (d) P₆₈₀ and P₇₀₀ are the reaction centres of PS I and PS II respectively
 - (e) NADPH is not produced in cyclic electron transport in light reactions
- 19. Which of the following is photophosphorylation

[WB JEE 2008]

- (a) Production of ATP from ADP
- (b) Production of NADP
- (c) Synthesis of ADP from ATP
- (d) Production of PGA
- 20. In chlorophyll structure four pyrrole rings are united with Mg by their atoms of [AMU (Med.) 2009]
 - (a) N (b) C
 - (c) H (d) O
- 21. The first acceptor of electrons from an excited chlorophyll molecule of photosystem II is [CBSE PMT 2007, 08]
 - (a) Cytochrome
 - (b) Iron-sulphur protein
 - (c) Ferredoxin
 - (d) Quinone

22. DCMU

[NCERT]

- (a) Inhibits PS-I
- (b) Inhibits PS-II
- (c) Destroy chloroplast
- (d) Inhibits oxidative phosphorylation

Get More Learning Materials Here : 📕

[MP PMT 2007]

UNIVERSAL BOOK DEPOT 1960

23.	NADPH ₂ is generated through [CBSE PMT 1997] Or	32.	The given as seen	ven diagram show n in section. Identi	ify the functions of	
24.	Ferredoxin is a component of [CBSE PMT 1991] (a) Glycolysis (b) Photosystem-I (c) Photosystem-II (d) Anaerobic respiration Photolysis of each water molecule in light reaction will yield [Kerala PMT 2007]			P • •	9	(NCERT)
	(a) 2 electrons and 4 protons			1	T	
	(b) 4 electrons and 4 protons				Q	R
	(c) 4 electrons and 3 protons		(-)	P Light reaction	Q Carbohydrate	R Carbohydrate
	(d) 2 electrons and 2 protons		(a)	Light reaction	synthesis	storage
	(e) 1 electron and 2 protons		(b)	Light reaction	Carbohydrate	Carbohydrate
25.	Which of the following statements is true with regard to the light reaction of photosynthesis [Kerala PMT 2011]		(c)	Light reaction	storage Carbohydrate synthesis	synthesis Carbohydrate storage
	(a) In PS II the reaction centre chlorophyll a has an absorption peak at 700 nm, hence is called P 700		(d)	Carbohydrate storage	Carbohydrate synthesis	Light reaction
	(b) In PS I the reaction centre chlorophyll a has an	33.	NADP	'is converted into	$NADPH_2$ in	
	absorption maxima at 680 nm and is called P 680		(a) P	hotosystem-I		
	(c) The splitting of water molecule is associated with PS I		(b) N	lon-cyclic photoph	nosphorylation	
	(d) Photosystems I and II are involved in Z scheme		(c) C	alvin cycle		
	(e) Lamellae of the grana have PS I and PS II and stroma		(d) P	hotosystem-II		
	lamellae membranes have PS II only	34.	The	creation of prot	on gradient acr	oss the thylakoid
26.	Which one of the following statements about the events of		memt	brane is a result of		[AMU (Med.) 2010]
	noncyclic photophosphorylation is not correct [KCET 2010; J & K CET 2012]		(a) D	ecrease in proton	number in stroma	amplotter
	(a) Only one photosystem participates		(b) A	ccumulation of pr	otons in the lume	n
	(b) ATP and NADPH are produced		(c) [Decrease in the pH	I in the lumen	
	(c) Photolysis of water takes place		1	II of the above		
	(d) O_2 is released	35.	Read	the following for	ur statements. A,	B, C and D and
27.	In which stage of photosynthesis, light is directly necessary [CPMT 1996]		State	ements	aving both correct	
	(a) For electron exitation			scheme of light r only.	eaction takes plac	e in presence of PS
	 (b) For reduction of CO₂ (c) For regulating photosystem 				onal in cyclic photo	ophosphorylation
	(d) For cyclic photophosphorylation		Anna Anna Anna			
28.	The source of O_2 liberated in photosynthesis in green plants is [CPMT 1994, 95; Bihar MDAT 1992;		F	ATP and NADPH	2	s into synthesis o
	MP PMT 1999, 2002, 10, 12; RPMT 1999]				ck PS II as well as	
	(a) Photosynthetic enzyme		Opti		The second second	PMT (Mains) 2010
	(b) Carbohydrate present in leaf			B) and (D)	(b) (A) an	
	(c) Water			B) and (C)	(d) (C) an	
	(d) Carbon dioxide	36.	Phtos	synthetic unit is		[MP PMT 2003
29.	Photolysis of water takes place in [CPMT 1995]		(a) (Glyoxysome	(b) Spher	osome
	(a) Calvin cycle (b) Glycolysis		(c) I	Microsome	(d) Quant	tasome
	(c) Light phase (d) Dark phase	37.	P ₇₀₀ i	s a special form of	f which pigment	[RPMT 1997
30.	The site of oxygen evolution and photosynthetic phosphorylation in chloroplast are		(a) (Chlorophyll b	(b) Carote	enes
	(a) Matrix (b) Grana stacks		(c) (Chlorophyll a	(d) Phyco	bilins
31.	(c) Inner wall of chloroplast (d) Surface of chloroplast	38.	Wate			E 2011; BHU 2012
	photosynthesis is to					EET (Phase-I) 2016
	(a) Activate chlorophyll (b) Split water			Chlorophyll	(b) Carot	
	(c) Reduce carbon dioxide (d) Synthesize glucose		(c)	Anthocyanin/phyc	obilin (d) Xanth	lophyll

Get More Learning Materials Here :

CLICK HERE (»

			Photosynthesis in Highe	r Plants 673
39	Where does the primary photochemical reaction occur in chloroplast or Where does the light reactions of photosynthesis take place or Light reaction takes place in	48.	Through which of the	following substances the ectron to NADP during light
	[CPMT 1995, 98; RPMT 1995, 99;			(b) Diastantin
	МР РМТ 1999; РЬ. РМТ 1999, 2000]			(b) Plastoquinone(d) Ferredoxin
	(a) Stroma	49.		ns of photosynthesis [NCERT;
	(b) Endoplasmic reticulum		RPMT 19	99; KCET 1994; MDAT 1995]
	(c) Quantasome or thylakoids (Grana)		 (a) Liberation of oxygen take 	s place
40	(d) Inner membrane of chloroplast		(b) Formation of ATP and NA	ADPH ₂ take place
40	The trapping centre of light energy in photosystem–I is [BHU 2000; BVP 2003]		take place	mation of ATP and $NADPH_2$
	Or	-	(d) Assimilation of CO_2 takes	
	Pigment system–I receives radiant energy and releases electron [MP PMT 1992]	50.	The core metal of chlorophyll i [CBSE PMT 1997, 9	is 99; AFMC 1999; CPMT 2005]
	(a) P-660 (b) P-680		Or	
41	(c) P-700 (d) P-720		Which element is left when chie	
41.				(b) Mg
	(a) Chlorophyll 'a' (b) Chlorophyll 'b'	51.	Hill's reaction takes place in	(d) Cu
	(c) Both (a) and (b) (d) None of the above		1151	b) Light
42.	Pigment system-I conducts [Odisha JEE 2011]			d) At any time
	(a) Cyclic photophosphorylation	52.	In photosynthesis light energy is	s utilized in
	(b) Non-cyclic photophosphorylation			ar MDAT 1995; CPMT 1998;
	(c) Both (a) and (b)		MHC	CET 2003; Odisha JEE 2005]
40	(d) None of the above		(a) Converting ATP into ADP(b) Changing CO₂ into carboh	
43.	Street Street in Stoneenied will		(c) Converting ADP into ATP	ydrate
	[MHCET 2000; BHU 2003]		(d) All of the above	
	(a) Photolysis of water (b) Reduction of CO_2	53.	Main pigment involved in	transfer of electrons in
	(c) Flowering (d) None of the above		photosynthesis is	[CPMT 1998]
44.	The role of chlorophyll in photosynthesis is		(a) Cytochrome (t	o) Phytochrome
	[CBSE PMT 2002]			d) None of these
	 (a) Absorption of CO₂ (b) Absorption of light 	54.		H CET 2004; MP PMT 2005; CBSE PMT 2009]
	(c) Absorption of light and photochemical decomposition		(a) Cyclic photosphosphorylati	on
	of water		 (b) Non cyclic photosphosphor (a) Bath 	ylation
	(d) Absorption of water		(c) Both (d) None	
45.	Photophosphorylation is a process in which [MP PMT 1996]		Splitting of water in photosynthe	asis is called
	(a) Light energy is converted into chemical energy in the			MT 2000, 04; MHCET 2001]
	form of ATP) Electron transfer
	(b) NADP is formed) Phototropism
	(c) Chemical energy is used to produce ATP	56.	Chlorophyll is	[MP PMT 1996; BVP 2002]
	(d) CO_2 is reduced to carbohydrate		(a) Soluble in organic solvents	The second second second second
46.	Which one of the following statements about cytochrome		(b) Soluble in water	
	P ₄₅₀ is wrong [CBSE PMT 1998]	70	c) Soluble in both organic solv	ents and water
	(a) It has an important role in metabolism		d) None of the above	
	(b) It contains iron	57.	n noncyclic photophosphorylat	tion, the pigment molecule
	(c) It is a coloured cell	f	irst excited is	[MHCET 2004]
	(d) It is an enzyme involved in oxidation reactions) P ₇₀₀
47.	Chlorophyll is present) Xanthophyll
	(a) On the surface of chloroplast		The 'Z' scheme of photosynthesis	s was proposed by
	(b) In the stroma of chloroplast	10000	a) Hill and Bendall	
	(c) In the grana of chloroplast		b) Emerson	
	(d) Dispersed throughout the chloroplast		c) Arnon	
	(-, spersed unoughout the chloropiast	(d) Rabinowitch and Govindjee	

Get More Learning Materials Here : 📕

R www.studentbro.in

0	Hill's law in photosynthesis shows [CPMT 1996]	71.	During non-cyclic photophosphorylation in which of the
9.	Hill's law in photosynthesis shows [CPMT 1996] (a) Electron exitation (b) Removal of water		following, $4e^-$ produced through photolysis will enter
			[GUJCET 2007]
0	(c) Fixation of CO_2 (d) O_2 is obtained from water Chloroplasts absorb light of wavelength [CPMT 1994]		(a) PS-II (b) PC
0.	(a) $200 - 300 \ m\mu$ (b) $800 - 1000 \ m\mu$		(c) PQ (d) $PS-I$
	(a) $200 = 300 m\mu$ (b) $300 = 1000 m\mu$ (c) $460 = 660 m\mu$ (d) $300 = 400 m\mu$	72.	O ₂ evolution is directly associated with
280			[DPMT 2003; BVP 2004]
1.	The reaction centre for PS-I and PS- II are		Or or the links
	[NCERT; MP PMT 2003]		Which of the following does not participate when the light reaction synthesizes only ATP or performs the cyclic flow of
	(a) P_{700} and P_{680} respectively (b) P_{680} and P_{700} respectively		electrons
	(c) P_{580} and P_{700} respectively(d) P_{700} and P_{580} respectively		(a) PS-I (b) PS-II
52.	Photo-oxidation of water results in the formation of		(c) Phytochrome (d) Phycocyanin
	[Odisha JEE 2012]	73.	
	(a) H^+ , O_2 and ATP (b) H^+ , O_2 , e^- and ATP		(a) NADH (b) NADP
	(c) H^+, O_2 and e^- (d) None of these		(c) ATP (d) NADPH
53.	Photosystem–I contains [RPMT 1992]	74.	The wavelength of light most absorbed during photosynthesis is [MP PMT 1998]
			(a) 440 nm (b) 550 nm
	(a) $Chl - a$, $Chl - b$, carotenoid and P_{680}		(c) 660 nm (d) 700 nm
	(b) $Chl - a$, $Chl - b$ and P_{690}	75.	The light absorbed by the chlorophyll is at the wave length of
	(c) $Chl - a$, $Chl - b$ and P_{700}	70.	[MP PMT 2002
	(d) $Chl - a$, xanthophyll and P_{700}		(a) 400 nm (b) 500 nm
54.	Which one of the following elements is required for		(c) 600 nm (d) 660 nm
	photosynthetic oxygen evolution	76.	
	[MP PMT 1998; AMU (Med.) 2012]		light harvesting complex are [Odisha JEE 2005]
	(a) Copper (b) Iron		(a) 100 (b) 200
	(c) Manganese (d) Zinc		(c) 400 (d) 500
55 .	Photolysis of water by isolated chloroplasts was demonstrated by [AIEEE Pharmacy 2004]	77.	Photosystem I and Photosystem II are found in [CBSE PMT 1992; RPMT 1999; BHU 2001; MP PMT 2001]
	(a) Robin Hill (b) Van Niel (c) Liebig (d) Calvin		(a) Stroma of chloroplast
	(c) Liebig (d) Calvin Photosynthetically active radiation (PAR) represents the		(b) Grana of chloroplast(c) Matrix of mitochondria
66.	following range of wavelength		(d) Inner membrane of mitochondria
	[CBSE PMT 1996, 2005; AIIMS 2007; BHU 2012]	78.	Which fractions of the visible spectrum of solar radiation
	(a) 340–450 mm (b) 400–700 mm	10.	are primarily absorbed by carotenoids of the higher plants
	(c) 500–600 mm (d) 450–950 mm		[CBSE PMT 1999
67.	Plants adapted to low light intensity have [CBSE PMT 2004]		(a) Violet and blue (b) Blue and green
	(a) More extended root system		(c) Green and red (d) Red and violet
	(b) Leaves modified to spines	79.	Chlorophyll 'a' and 'b' shows maximum absorption in
	(c) Larger photosynthetic unit size than the sun plants		(a) Blue region [NCERT
	(d) Higher rate of CO_2 fixation than the sun plants		(b) Red region
68.	Hill reaction occurs in [AIIMS 2003]		(c) Blue and red regions(d) Yellow and violet regions
	(a) High altitude plants (b) Total darkness	80.	(d) Tellow and violet regions
	(c) Absence of water (d) Presence of ferredoxin	00.	A state of the
69.	ATP formation in photosynthesis is known as [MP PMT 1993, 2006; CPMT 1998]		B
	(a) Phosphorylation		Q 2H20
	(b) Photophosphorylation		$dH^+ + O_2$
	(c) Oxidative phosphorylation		$PS II (P680)$ $D \rightarrow PS I$
	(d) None of the above		
70.	In photosystem-I, the first electron acceptor is		In the above schematic diagram, which is plastocyanin
	(a) Plastocyanin (b) An iron-sulphur protein		(a) C (b) D
	(a) Plastocyanin (b) An iron-sulphur protein (c) Ferredoxin (d) Cytochrome		(a) C (b) D (c) A (d) B
	(c) renedoxin (d) cytochronie		

Get More Learning Materials Here : 📕

R www.studentbro.in

			Photosynthesis in H
81. 82.	[CBSE PMT 1999		The enzyme responsib plants is (a) Hexokinase (b) Succinic dehydroge (c) Pyruvate carboxylase (d) RuBP carboxylase o
	(a) AMP + Inorganic $PO_4 \xrightarrow{\text{Light energy}} ATP$		(e) PEP carboxylase
	(b) $ADP + AMP \xrightarrow{\text{Light energy}} ATP$ (c) $ADP + \text{Inorganic } PO_4 \xrightarrow{\text{Light energy}} ATP$ (d) $ADP + \text{Inorganic } PO_4 \rightarrow ATP$	6.	
83.	Who revealed the chemical composition of chlorophyl carotene and xanthophyll	1	RuBP
84.	 (a) Govindjee (b) Willstatter and Stoll (c) Park and Biggins (d) Meyers and French Which one is Cu⁺⁺ containing pigment [CPMT 1999, 2003; MP PMT 2003] 		RuMP
	(a) Ferredoxin(b) Plastocyanin(c) Plastoquinone(d) Cytochrome		G
85.	The chlorophylls absorb visible light in the region of following wavelengths [BHU 1994] (a) 400 nm to 500 nm only (b) 600 nm to 800 nm only (c) 400 nm to 500 nm and 600 nm to 700 nm (d) 300 nm to 400 nm only		 (a) A = CO₂ fixation, B D = Regeneration (b) A = Regeneration, I D = Phosphorylation (c) A = CO₂ fixation, B D = Regeneration
	Dark reaction		(d) $A = CO_2$ fixation, B =
1. 2.	Dark reaction of photosynthesis is called (a) Aphotic action (b) Black action (c) Blackman's reaction (d) None of the above The Calvin cycle proceeds in three stages 1. Reduction, during which carbohydrate is formed at the expense of the photochemically made ATP and NADPH	7.	D = Reduction
	2. Regeneration, during which the carbon dioxide acceptor ribulose–1, 5–biphosphate is formed		(c) PGA \rightarrow PGAL (d) RUBP \rightarrow PGA
	 3. Carboxylation, during which carbon dioxide combines with ribulose-1, 5-biphosphate Identify the correct sequence [Kerala PMT 2006] (a) 3-1-2 (b) 3-2 (c) 1-2-3 (d) 2-1-3 	8. 9.	For the same amount of comparison with a C ₃ plan (a) Half amount of water (c) Double amount of water Which of the following
	(e) $1-3-2$		photorespiration of C_3 plan
I. I	PGA as the first CO ₂ fixation product was discovered in photosynthesis of [CBSE PMT (Pre.) 2010] (a) Alga (b) Bryophyte (c) Gymnosperm (d) Angiosperm dentify the incorrect statement with respect to Calvin cycle [KCET 2009] a) The carboxylation of RuBP is catalysed by rubisco b) The first stable intermediate compound formed is phosphoglycerate	10.	 (a) Phosphoglycerate (c) Glycerate During Calvin cycle the to NADPH molecules utilized molecules generated is (a) 31 (c) 61
	c) 18 molecules of ATP are synthesized during carbon fixation	11.	CO_2 joins the photosynthetic
(1	d) $NADPH + H^+$ produced in light reaction is used to reduce diphosphoglycerate		(a) Light reaction(c) Photosystem–I

Higher Plants 675 UNIVERSAL BOOK DEPOT 196

- ble for primary carboxylation in C_3 [Kerala PMT 2009]
 - enase
 - ase
 - oxygenase
- atic representation of dark reaction of below, steps are indicated by option where the alphabets are

- [KCET 2012]
- B = Reduction, C = Phosphorylation,
- $B = CO_2$ fixation, C = Reduction, n
- = Phosphorylation, C = Reduction,
- = Phosphorylation, C = Regeneration,

the C_4 plants are infected by an CO2 efficiently then which process [GUJCET 2014]

- Blucose
- of CO_2 fixed, a C_4 plant, in nt, loses only [AMU (Med.) 2009,10]
 - (b) Equal amount of water
 - ater (d) None of these
- g is the main product in the ints

[CPMT 1999; MP PMT 2010, 12]

- (b) Phosphoglycolate
- (d) Glycolate total number of CO2, ATP and
 - ed and glucose, ADP and NADP
 - [AMU (Med.) 2012] (b) 36
- (d) 67
- tic pathway during

[MP PMT 1999]

- (b) Dark reaction
 - (d) Photosystem-II

Get More Learning Materials Here :

CLICK HERE >>>

In which of the following options correct words for all the three blanks A, B and C are indicated

[NCERI; CBSE PM1 (Mains) 2							
	A	В	C				
(a)	Decarboxylation	Reduction	Regeneration				
(b)	Fixation	Transamination	Regeneration				
(c)	Fixation	Decarboxylation	Regeneration				
(d)	Carboxylation	Decarboxylation	Reduction				

- 13. The initial enzyme of Calvin cycle is [VITEEE 2008]
 (a) Ribulose 1, 5–diphosphate carboxylase
 - (b) Triose phosphate dehydrogenase
 - (c) Phosphopentokinase
 - (d) Cytochrome oxidase
- 14. During photosynthesis when PGA is changed into phosphoglyceraldehyde, which of the following reaction occur
 - (a) Oxidation (b) Reduction
 - (c) Electrolysis (d) Hydrolysis
- Ribulose diphosphate carboxylase enzyme catalyses the carboxylation reaction between [MP PMT 2013]
 - (a) Oxaloacetic acid and acetyl CoA
 - (b) CO2 and ribulose 1, 5 diphosphate
 - (c) Ribulose diphosphate and phosphoglyceraldehyde
 - (d) PGA and dihydroxy acetone phosphate
- 16. Calvin cycle occur in [MP PMT 1996; BVP 2002]
 - (a) Chloroplasts (b) Cytoplasm
 - (c) Mitochondria (d) Glyoxysomes
- 17. During dark reaction of photosynthesis
 - (a) Water split
 - (b) CO2 is reduced to organic compounds
 - (c) Chlorophyll is activated
 - (d) 6 carbon sugar is broken down into 3 carbon sugar

- 18. 3-PGA is first stable product in
 - (a) Carbon-reduction cycle (b) OAA
 - (c) Malic acid (d) PEP
- **19.** In C_3 plants, the first stable product of photosynthesis during dark reaction is

[CPMT 1992, 2009; BHU 1995; RPMT 1995; CBSE PMT 1995; KCET 1998; MP PMT 2000, 06; BVP 2000, 09; DPMT 2006; Kerala PMT 2009]

- (a) 3-phosphoglyceric acid (b) Phosphoglyceraldehyde
- (c) Malic acid (d) Oxaloacetic acid
- Choose the correct combinations of labelling the carbohydrate molecule involved in the Calvin cycle.

[NCERT; Kerala PMT 2007]

[CPMT 1995]

[DPMT 2007]

- (a) (i) RuBP (ii) Triose phosphate (iii) PGA
- (b) (i) PGA (ii) RuBP (iii) Triose phosphate
- (c) (i) PGA (ii) Triose phosphate (iii) RuBP
- (d) (i) RuBP (ii) PGA (iii) Triose phosphate
- (e) (i) Triose phosphate (ii) PGA (iii) RuBP
- 21. One molecule of glucose in Calvin cycle is formed from [KCET 2006; Odisha JEE 2010]
 - (a) 6CO2 + 12ATP
 - (b) $6CO_2 + 30ATP + 12NADPH$
 - (c) $6CO_2 + 18ATP + 12NADPH$
 - (d) $6CO_2 + 18ATP + 30NADPH$
- 22. Calvin cycle is
 - (a) Dependent on light
 (b) Not dependent on light
 (c) Occurs in light
 (d) None of these
- (c) Occurs in light(d) None of these23. How many Calvin cycle form one hexose molecul
 - How many Calvin cycle form one hexose molecule [CBSE PMT 1996, 2000]
 - (a) 2 (b) 6
 - (c) 4 (d) 8
- 24. CO₂ acceptor in C₃ plants is [CBSE PMT 1995, 96,99; CPMT 1999, 2001; RPMT 2002, 06; J & K CET 2008; WB JEE 2009; AFMC 2010]
 - (a) Xylulose-5-phosphate
 - (b) 3-phosphoglyceric acid
 - (c) Ribulose 1, 5-diphosphate
 - (d) Phosphoenol pyruvic acid
- 25. Which of the following is present in Calvin cycle

[CBSE PMT 1996; AFMC 2008]

- (a) Photophosphorylation
- (b) Oxidative carboxylation
- (c) Reductive carboxylation
- (d) Oxidative phosphorylation

Get More Learning Materials Here : 📒

ACCOUNT OF			Photosynthesis in Higher Plants 677
26.	In C ₃ plants, photosynthesis occur in [J & K CET 2010]	4.	In C_4 plants, the bundle sheath cells
	(a) Bundles sheath cells (b) Peroxisome		[DUMET 2009; NEET (Karnataka) 2013]
	(c) Mesophyll cells (d) Kranz anatomy		(a) Have thin walls of facilitate the gaseous exchange
27.	In which plant Calvin experimented by radioactive isotopy		(b) Have large intercellular spaces
	to discover the stable product of C_3 cycle [Odisha JEE 2005]		(c) Are rich in PEP carboxylase
	(a) Chlorella (b) Cycas	5.	(d) Have a high density of chloroplasts and rich in RuBisCo The ratio between 2-carbon and 3-carbon intermediate
	(c) Carrot (d) Tobacco	0.	having $-NH_2$ group formed in photosynthetic oxidation
8.	Radioactive C^{14} is given to CO_2 and released to atmosphere.		cycle is [EAMCET 2009
	This CO_2 is taken by RuBP in a C_3 plant. First radioactive C^{14} is seen in which compound [Manipal 2005]		(a) 1:1 (b) 2:1
	(a) PGAL (b) PEP		(c) 3:2 (d) 3:4
	(c) RMP (d) PGA	6.	The first carbon fixation in C_4 pathway occurs in
9.	The first step in dark reaction of photosynthesis is		chloroplasts of [CBSE PMT 1995
	[CPMT 2004]		MP PMT 1997; WB JEE 2008
	(a) Formation of ATP		 (a) Guard cells (b) Mesophyll cells (c) Bundle sheath cells (d) Epidermal cells
	(b) Ionization of water	7.	(c) Bundle sheath cells (d) Epidermal cells An alternate CO_2 fixation mechanism was found some
	(c) Attachment of CO_2 to a pentose sugar		tropical species of grass family by Hatch and Slack, who
	(d) Excitement of electron of chlorophyll by a photon of light		were from [AMU (Med.) 2009]
0.	Which of the following is the first compound that accepts		(a) England (b) USA
	carbon dioxide during dark phase of photosynthesis		(c) Australia (d) New Zealand
	[BHU 2004]	8.	In a CAM plant the concentration of organic acid
	(a) NADP (b) RuBP (c) Ferridoxin (d) Cytochrome		
	(c) Ferridoxin (d) Cytochrome Number of carboxylation occur in Calvin cycle, is		(a) Increases during the day
	[DPMT 2004]		(b) Decreases or increases during the day
	(a) 0 (b) 1		(c) Increases during night
,	(c) 2 (d) 3		(d) Decreases during any time
2.	Reducing power which is transferred from light reaction of photosynthesis to the dark reaction is [AFMC 2012]	9.	In photorespiration, what is the role of peroxisome
	(a) ATP (b) NADPH		[GUJCET 2007]
	(c) NADH (d) FADH ₂		(a) Help in oxidation of glycolate
on the second	C ₄ /CAM/Photorespiration		(b) Help in oxygenation of glycolate
and of	The family in which many plants are C_4 type		(c) Help in synthesis of PGA
			(d) Help in reduction of glyoxylate
	(a) Malvaceae (b) Solanaceae		(d) Theip in reduction of glyoxylate
		10	Duine 1 1 Strategy at
	(c) Crucifereae (d) Gramineae	10.	and the second
	Which of the following statements with regard to	10.	occur in [CBSE PMT 2006]
	Which of the following statements with regard to photosynthesis is/are correct	10.	occur in [CBSE PMT 2006] (a) Grana of chloroplasts and peroxisomes
	Which of the following statements with regard to photosynthesis is/are correct A. In C_4 plants, the primary CO_2 acceptor is PEP	10.	occur in [CBSE PMT 2006]
	Which of the following statements with regard to photosynthesis is/are correct A. In C_4 plants, the primary CO_2 acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or	10.	occur in [CBSE PMT 2006] (a) Grana of chloroplasts and peroxisomes
	 Which of the following statements with regard to photosynthesis is/are correct A. In C₄ plants, the primary CO₂ acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or just below 680 nm 	10.	occur in [CBSE PMT 2006] (a) Grana of chloroplasts and peroxisomes (b) Stroma of chloroplasts
	 Which of the following statements with regard to photosynthesis is/are correct A. In C₄ plants, the primary CO₂ acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or just below 680 nm C. The pigment that is present in the pigment system I is 	10.	 (a) Grana of chloroplasts and peroxisomes (b) Stroma of chloroplasts (c) Stroma of chloroplasts and mitochondria (d) Stroma of chloroplasts and peroxisomes
	 Which of the following statements with regard to photosynthesis is/are correct A. In C₄ plants, the primary CO₂ acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or just below 680 nm C. The pigment that is present in the pigment system I is P₆₈₃ [Kerala PMT 2008] 		occur in [CBSE PMT 2006] (a) Grana of chloroplasts and peroxisomes (b) Stroma of chloroplasts (c) Stroma of chloroplasts and mitochondria (d) Stroma of chloroplasts and peroxisomes The energy wastage occurs during
	 Which of the following statements with regard to photosynthesis is/are correct A. In C₄ plants, the primary CO₂ acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or just below 680 nm C. The pigment that is present in the pigment system I is P₆₈₃ [Kerala PMT 2008] (a) B and C only (b) A only 		occur in [CBSE PMT 2006] (a) Grana of chloroplasts and peroxisomes (b) Stroma of chloroplasts (c) Stroma of chloroplasts and mitochondria (d) Stroma of chloroplasts and peroxisomes The energy wastage occurs during (a) Dark respiration (b) Photosynthesis
	 Which of the following statements with regard to photosynthesis is/are correct A. In C₄ plants, the primary CO₂ acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or just below 680 nm C. The pigment that is present in the pigment system I is P₆₈₃ [Kerala PMT 2008] (a) B and C only (b) A only (c) C only (d) A and B only 	11.	occur in [CBSE PMT 2006] (a) Grana of chloroplasts and peroxisomes (b) Stroma of chloroplasts (c) Stroma of chloroplasts and mitochondria (d) Stroma of chloroplasts and peroxisomes The energy wastage occurs during (a) Dark respiration (b) Photosynthesis (c) Glycolysis (d) Photorespiration
	Which of the following statements with regard to photosynthesis is/are correctA. In C_4 plants, the primary CO_2 acceptor is PEPB. In the photosynthetic process PS II absorbs energy at or just below 680 nmC. The pigment that is present in the pigment system I is P_{683} [Kerala PMT 2008](a) B and C only(b) A only(c) C only(d) A and B only(e) A and C only		occur in [CBSE PMT 2006] (a) Grana of chloroplasts and peroxisomes (b) Stroma of chloroplasts (c) Stroma of chloroplasts and mitochondria (d) Stroma of chloroplasts and peroxisomes The energy wastage occurs during (a) Dark respiration (b) Photosynthesis (c) Glycolysis (d) Photorespiration (a) Dark respiration (b) Photorespiration (c) Glycolysis (d) Photorespiration (d) Photorespiration
	Which of the following statements with regard to photosynthesis is/are correct A. In C_4 plants, the primary CO_2 acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or just below 680 nm C. The pigment that is present in the pigment system I is P_{683} [Kerala PMT 2008] (a) B and C only (b) A only (c) C only (d) A and B only (e) A and C only The C ₄ plants are photosynthetically more efficient than C ₃	11.	occur in [CBSE PMT 2006] (a) Grana of chloroplasts and peroxisomes (b) Stroma of chloroplasts (c) Stroma of chloroplasts and mitochondria (d) Stroma of chloroplasts and peroxisomes The energy wastage occurs during (a) Dark respiration (b) Photosynthesis (c) Glycolysis (d)
	 Which of the following statements with regard to photosynthesis is/are correct A. In C₄ plants, the primary CO₂ acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or just below 680 nm C. The pigment that is present in the pigment system I is P₆₈₃ [Kerala PMT 2008] (a) B and C only (b) A only (c) C only (d) A and B only (e) A and C only The C₄ plants are photosynthetically more efficient than C₃ plants because 	11. 12.	occur in [CBSE PMT 2006] (a) Grana of chloroplasts and peroxisomes (b) Stroma of chloroplasts (c) Stroma of chloroplasts and mitochondria (d) Stroma of chloroplasts and peroxisomes The energy wastage occurs during (a) Dark respiration (b) Photosynthesis (c) Glycolysis (d) (a) Maize, papaya (b) (a) Maize, papaya (b) (a) Maize, papaya (d) (b) Pineapple, agave (c) Onion, mango (d)
	 Which of the following statements with regard to photosynthesis is/are correct A. In C₄ plants, the primary CO₂ acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or just below 680 nm C. The pigment that is present in the pigment system I is P₆₈₃ [Kerala PMT 2008] (a) B and C only (b) A only (c) C only (d) A and B only (e) A and C only The C₄ plants are photosynthetically more efficient than C₃ plants because [CBSE PMT 2008; CBSE PMT (Pre.) 2010; AIIMS 2011] 	11.	[CBSE PMT 2006](a)Grana of chloroplasts and peroxisomes(b)Stroma of chloroplasts(c)Stroma of chloroplasts and mitochondria(d)Stroma of chloroplasts and peroxisomesThe energy wastage occurs during(a)Dark respiration(b)Photosynthesis(c)Glycolysis(d)Photorespiration
	 Which of the following statements with regard to photosynthesis is/are correct A. In C₄ plants, the primary CO₂ acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or just below 680 nm C. The pigment that is present in the pigment system I is P₆₈₃ [Kerala PMT 2008] (a) B and C only (b) A only (c) C only (d) A and B only (e) A and C only The C₄ plants are photosynthetically more efficient than C₃ plants because [CBSE PMT 2008; CBSE PMT (Pre.) 2010; AIIMS 2011] (a) The CO₂ efflux is not prevented 	11. 12.	occur in [CBSE PMT 2006] (a) Grana of chloroplasts and peroxisomes (b) Stroma of chloroplasts (c) Stroma of chloroplasts and mitochondria (d) Stroma of chloroplasts and peroxisomes The energy wastage occurs during (a) Dark respiration (b) Photosynthesis (c) Glycolysis (d) (a) Maize, papaya (b) (a) Maize, papaya (b) (a) Maize, papaya (d) (b) Pineapple, agave (c) Onion, mango (d)
	 Which of the following statements with regard to photosynthesis is/are correct A. In C₄ plants, the primary CO₂ acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or just below 680 nm C. The pigment that is present in the pigment system I is P₆₈₃ [Kerala PMT 2008] (a) B and C only (b) A only (c) C only (d) A and B only (e) A and C only The C₄ plants are photosynthetically more efficient than C₃ plants because [CBSE PMT 2008; CBSE PMT (Pre.) 2010; AIIMS 2011] (a) The CO₂ efflux is not prevented (b) They have more chloroplasts 	11. 12.	occur in[CBSE PMT 2006](a)Grana of chloroplasts and peroxisomes(b)Stroma of chloroplasts(c)Stroma of chloroplasts and mitochondria(d)Stroma of chloroplasts and peroxisomesThe energy wastage occurs during(a)Dark respiration(b)Photosynthesis(c)Glycolysis(d)Photorespiration
	 Which of the following statements with regard to photosynthesis is/are correct A. In C₄ plants, the primary CO₂ acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or just below 680 nm C. The pigment that is present in the pigment system I is P₆₈₃ [Kerala PMT 2008] (a) B and C only (b) A only (c) C only (d) A and B only (e) A and C only The C₄ plants are photosynthetically more efficient than C₃ plants because [CBSE PMT 2008; CBSE PMT (Pre.) 2010; AIIMS 2011] (a) The CO₂ efflux is not prevented (b) They have more chloroplasts (c) The CO₂ compensation point is more 	11. 12.	occur in[CBSE PMT 2006](a)Grana of chloroplasts and peroxisomes(b)Stroma of chloroplasts(c)Stroma of chloroplasts and mitochondria(d)Stroma of chloroplasts and peroxisomesThe energy wastage occurs during(a)Dark respiration(b)Photosynthesis(c)Glycolysis(d)Photorespirationare CAM plant[Odisha JEE 2005; KCET 2011](a)Maize, papaya(b)Pineapple, agave(c)Onion, mango(d)Pea, sugarcaneWhich one is a C_4 plant[MP PMT 1993, 95; VITEE 2006](a)Sorghum(b)Tribulus
	 Which of the following statements with regard to photosynthesis is/are correct A. In C₄ plants, the primary CO₂ acceptor is PEP B. In the photosynthetic process PS II absorbs energy at or just below 680 nm C. The pigment that is present in the pigment system I is P₆₈₃ [Kerala PMT 2008] (a) B and C only (b) A only (c) C only (d) A and B only (e) A and C only The C₄ plants are photosynthetically more efficient than C₃ plants because [CBSE PMT 2008; CBSE PMT (Pre.) 2010; AIIMS 2011] (a) The CO₂ efflux is not prevented (b) They have more chloroplasts 	11. 12. 13.	occur in[CBSE PMT 2006](a)Grana of chloroplasts and peroxisomes(b)Stroma of chloroplasts(c)Stroma of chloroplasts and mitochondria(d)Stroma of chloroplasts and peroxisomesThe energy wastage occurs during(a)Dark respiration(b)Photosynthesis(c)Glycolysis(d)Photorespirationare CAM plant[Odisha JEE 2005; KCET 2011](a)Maize, papaya(b)Pineapple, agave(c)Onion, mango(d)Pea, sugarcaneWhich one is a C_4 plant[MP PMT 1993, 95; VITEE 2006](a)Sorghum(b)Tribulus(c)Maize(d)All of these

Get More Learning Materials Here : 📕

15.	In C_4 plants, Calvin cycle occurs in	24.	A pla	ant in your garden avoi	ds p	hotorespiratory losses, ha
	[CBSE PMT 1994; CPMT 2005]					y shows high rates o
	(a) Stroma of bundle sheath chloroplast					atures and has improved
	(b) Mesophyll chloroplast			iological groups would ye		In which of the following
	(c) Grana of bundle sheath chloroplast		pilje	de la capa d		[NEET (Phase-I) 2016
	(d) Does not occur as CO_2 is fixed mainly by PEP and no		(a)	C.	(b)	C ₄
	CO_2 is left for Calvin cycle			CAM		Nitrogen fixer
16.	Photorespiration is characteristic of	25.	- Martine			AM plant [MHCET 2015
	[MP PMT 1994; BHU 1995, 2002]			Maize		Kalanchoe
	(a) CAM Plants (b) C_3 Plants		(c)	Sugarcane	(d)	Jowar
	(c) C_4 Plants (d) None of the above	26.	Selec	t the incorrect matched p	bair	with regard to C_4 cycle
17.	C ₄ photosynthesis does not occur in [CPMT 1994; MP PMT 2000]					[Kerala PMT 2011
	(a) Zea mays		(a)	Primary CO ₂ fixation	-	PGA
	(b) Saccharum munja			product	172	Vin population Prilot
	(c) Saccharum officinarum		(b)	Site of initial	-	Mesophyll cells
	(d) Euphorbia splendens			carboxylation		 Attraction (c)
18.	Which of the following is CO_2 acceptor in C_4 plants		(c)	Primary CO ₂ acceptor	-	PEP
	[NCERT; CBSE PMT 1990; CPMT 1994, 98, 2004, 09;		(d)	C ₄ plant	-	Maize
	BHU 1994, 2000, 01; EAMCET 1995; MP PMT 1996;		(e)	Location of enzyme	-	Bundle sheath cells
	Odisha PMT 2002; BVP 2002; MHCET 2002; RPMT 2006;			RuBisCO		Contraction of the
	Kerala PMT 2007; J & K CET 2010; NEET 2017]	27.		helps the plants in		[CBSE PMT (Pre.) 2011
	(a) Phosphoenol pyruvate (PEP)			Reproduction		Conserving water
	(b) Ribulose 1, 5-diphosphate (RuDP)	00		Secondary growth	2.5	Disease resistance
	(c) Oxaloacetic acid (OAA)	28.	Agra	nal chloroplasts occur in		ain [MP PMT 1995, 98
	(d) Phosphoglyceric acid (PGA)				Dr	
19.	Which of the following cycle shows oxaloacetic acid as first			lex spongiosa is a		0.1.1
	stable product [BHU 2008; J & K CET 2012]		A	Succulents		C_4 plants
	(a) Calvin cycle (b) Hatch and Slack cycle (C_4)	29.		Hydrophytes		C_3 plants
	(c) C_2 cycle (d) None of the above	29.		on occurs in the cells of C_4 plants, ma	alic	acid formation during CO [CBSE PMT 2007, 08
20.	Kranz type of anatomy is found in [CBSE PMT 1990;			Mesophyll	(b)	Bundle Sheath
i.	RPMT 1995, 97; MH CET 2006; J & K CET 2008;			Phloem		Epidermis
	AFMC 2009; CBSE PMT (Mains) 2010;	30.	Whic	h of the following plants		nd intermediate between C
	(a) C_2 plants (b) C_3 plants			C ₄ plants		
	(a) C_2 plants (b) C_3 plants (c) C_4 plants (Sugarcane) (d) CAM plants		(a) '	Triticum aestivum	(b)	Zea mays
21.	During photorespiration which compounds are formed		(c) 1	Panicum milioides	(d)	All the above
	having 2C and 3C respectively in Peroxisome	31.	Chlo	roplasts without grana ar	e kn	lown to occur in
	[GUJCET 2015]					[KCET 2006
	(a) Glycolate, Glycine			Bundle sheath cells of C_3		ints
	(b) Glycine, Glycerate			Mesophyll cells of C_4 pla		and the state of
	(c) Serine, Glycine			Bundle sheath cells of C_4		ints
1.03	(d) Phosphoglycerate, Glycolate	20		Mesophyll cells of all plan		
22.	C ₄ plants are adapted to [NCERT; BHU 2002]	32.				nost efficiently [BHU 2006]
	(a) Hot and dry climate (b) Temperate climate			Potato Wheat		Sugarcane Rice
	(c) Cold and dry climate (d) Hot and humid climate	33.	1.0		2.00	n during day and closed in
23.	Which one of the following is wrong in relation to	33.			-	r 2004; AMU (Med.) 2005
	photorespiration [CBSE PMT 2003] (a) It is a characteristic of C plants			Crassulacean acid metab		
	 (a) It is a characteristic of C₃ plants (b) It occurs in chloroplasts 			C ₃ plants		inter automation
	(c) It occurs in day time only			C_4 plants		

Get More Learning Materials Here :

			Photosynthesis in Higher Plants 679
34.	Correlation between 'Kranz' anatomy and C_4 path of CO_2	44	. Which of the following statements regarding C_4 pathway
	assimilation was first established by (a) Hill and Bendall (b) Calvin		false [Kerala PMT 2010, 12
	(c) Dowton and Treguna (d) Arnold		(a) The primary CO_2 acceptor is 5 carbon molecule
i.	The glycolate metabolism occur in		(b) The enzyme responsible for CO_2 fixation is PEP case
	[MP PMT 1995, 2000, 01; RPMT 1999; BHU 2001;		(c) The mesophyll cell lack RuBisCO enzyme
	AIIMS 2001; BVP 2003; WB JEE 2010]		(d) The C_4 acid OAA is formed in the mesophyll cells
	(a) Lysosomes (b) Ribosomes		
	(c) Glyoxysomes (d) Peroxisomes	45	(e) The bundle sheath cells contain the enzyme PEP case
6.	Members of family Crassulaceae perform [MHCET 2004]	45.	provide and an plants with the 1993
	(a) C_3 photosynthesis (b) CAM photosynthesis		(a) Thin green leaves with reticulate venation
	(c) C_4 photosynthesis (d) All of the above		(b) Thin green leaves with parallel venation
7.	In Kranz anatomy, the bundle sheath cells have		(c) Fleshy green leaves
	[CBSE PMT (Mains) 2011]		(d) Thin coloured leaves
	(a) Thin walls, no intercellular spaces and several	46.	C_4 plant shows efficiency even in [HPMT 2005]
	(b) Thick walls, many intercellular spaces and few		(a) Low CO_2 concentration (b) Low temperature
	(b) Thick walls, many intercellular spaces and few chloroplasts		
		47	(c) High O_2 concentration (d) At low water
	 (c) Thin walls, many intercellular spaces and no chloroplasts 	47.	
	(d) Thick walls, no intercellular spaces and large number of		the enzyme that fixes CO ₂ is [CBSE PMT 1999]
	chloroplasts		(a) Fructose phosphatase
3.	Source of CO_2 for photosynthesis during day in CAM plant is		(b) Ribulose biphosphate carboxylase
	[CPMT 2005]		(c) Phosphoenol pyruvic acid carboxylase
	(a) 3-PGA (b) Malic acid		(d) Ribulose phosphate kinase
	(c) Oxalo-acetic acid (d) Pyruvate	48.	
•	Which of the following is a 4-carbon compound		C4 plants is [CBSE PMT (Pre.) 2012; NEET (Phase-II) 2016]
	[Kerala PMT 2010]		
	(a) Oxaloacetic acid (b) Phosphoglyceric acid		
	(c) Ribulose bis phosphate (d) Phosphoenol pyruvate(e) Citric acid	49.	
		47.	Which of the statements is not true of the C ₄ pathway [AIEEE Pharmacy 2004]
•	Sugarcane show high efficiency of CO_2 fixation because of		(a) It requires more energy than the C_3 pathway for
	(a) Calvin cycle (b) Hatch and Slack cycle		production of glucose
	(a) Calvin cycle(b) Hatch and Slack cycle(c) TCA cycle(d) Greater sunlight		(b) It overcomes loss due to photorespiration
	In C_4 -plants, the carbon dioxide fixation occurs in		(c) The CO_2 acceptor is a C_3 compound
			(d) It is inhibited by high CO_2 concentration
	(a) Guard cells (b) Spongy cells	50.	Photorespiration is called
	(c) Palisade cells (d) Bundle sheath cells		[MHCET 2000; VITEEE 2006; J & K CET 2010]
	Photorespiration is favoured by		(a) C_2 cycle (b) C_3 cycle
	[CBSE PMT 1991; BHU 2002; BVP 2003]		(c) C_4 cycle (d) None of these
	(a) Low light and high O_2	51.	The first reaction in photorespiraton is
	(b) Low O_2 and high CO_2		[RPMT 1999; CBSE PMT 2000; CPMT 2001]
	(c) Low temperature and high O_2		(a) Carboxylation
	(d) High O_2 and low CO_2		(b) Decarboxylation
	Photosynthesis in C_4 plants is relatively less limited by		(c) Oxygenation
	atmospheric CO ₂ levels because [CBSE PMT 2005]		(d) Phosphorylation
	(a) Four carbon acids are the primary initial CO_2 fixation	52.	In photorespiration glycolate is converted to CO_2 and serine in [AIEEE Pharmacy 2003]
	(b) The primary fixation of CO is modified by a DED		(a) Chloroplasts (b) Peroxisomes
	(b) The primary fixation of CO_2 is mediated via PEP		(c) Vacuoles (d) Mitochondria
	carboxylase (c) Effective pumping of CO, into hundlasheath calls	53.	No. of carboxylation in C_4 cycle is/are [DPMT 2003]
	(c) Effective pumping of CO_2 into bundlesheath cells		(a) 1 (b) 2
	(d) Rubisco in C_4 plants has higher affinity for CO_2		(0) 2

Get More Learning Materials Here : 📕

R www.studentbro.in

54.	In Hatch and Slack pathway [BHU 2003] (a) Chloroplast are of same type	2.	All life on earth derive its energy directly or indirectly from sun except [CBSE PMT 1994]
	(b) Occurs in Kranz anatomy where mesophyll have small		(a) Mushroom and mould (b) Chemosynthetic bacteria
	chloroplast whereas bundle sheath have agranal		(c) Symbiotic bacteria (d) Pathogenic bacteria
	chloroplast	3.	Which one of the following categories of organisms do not
	(c) Occurs in Kranz anatomy when mesophyll have small		evolve oxygen during photosynthesis
	chloroplast where a bundle sheath have larger chloroplast		[CPMT 1999, 2003; JIPMER 1999;
	(d) Kranz anatomy where mesophyll cell are diffused		AIIMS 2004; RPMT 2006]
55.	The enzyme which catalyzes the photosynthetic C_4 cycle is		(a) Red algae
	Or		(b) Photosynthetic bacteria
	In C_4 plants, CO_2 combine with PEP in presence of		(c) C_4 plants with Kranz anatomy
	(a) RuDP carboxylase (b) PEP carboxylase		(d) Blue green algae
	(c) Carbonic anhydrase (d) None of these	4.	The site of photosynthesis in blue green algae is
56.	Peroxysomes are found in [Odisha JEE 2005]		[MP PMT 2009]
	(a) Bundle sheath(b) Endosperm(c) Mesophyll cells(d) Vascular bundle		Or
57.	(c) Mesophyll cells (d) Vascular bundle Peroxysome are related with [PUNE CET 1998;		Photosynthetic bacteria have pigments in
57.	MP PMT 1998, 04, 05; AMU (Med.) 2005]		[CBSE PMT 1999; RPMT 1999; Bihar CECE 2006]
	(a) Photosynthesis (b) Photorespiration		(a) Chromatophores (b) Mitochondria
	(c) Respiration (d) None		(c) Chloroplast (d) Root hair
58.	Photorespiration takes place is	5.	In the bacterial photosynthesis, hydrogen donor is
	[BHU 1994, 2000, 01; MP PMT 2000, 01, 09;		(a) $H_2 S$ (b) NH_2
	AIIMS 2001, 02; Kerala PMT 2002, 08;	(290)	(c) H_2O (d) H_2SO_4
	CPMT 2005; Odisha JEE 2011; CBSE PMT (Pre.) 2012] Or	6.	Which wavelength of light carry out photosynthesis in bacteria
	Photorespiratory reactions are operated in		(a) Ultraviolet light (b) Blue
	(a) Chloroplast, mitochondria		(c) Red (d) Far red
	(b) Mitochondria, peroxysome	7.	Leptothrix is a
	(c) Chloroplasts, peroxysome, mitochondria		(a) Nitrifying bacteria (b) Sulphur bacteria
	(d) Chloroplasts, cytoplasm, mitochondria		(c) Iron bacteria (d) Hydrogen bacteria
59.	Which one is false about kranz anatomy [CPMT 2005]	8.	Green bacteria contains
	(a) Bundle sheath have large chloroplast and less developed grana		(a) Chlorobium chlorophyll_660(b) Chlorobium chlorophyll_650
	(b) Mesophyll cells have large chloroplast and more		(c) Both (a) and (b)
			(d) Chlorobium chlorophyll–700
		9.	Bacterial photosynthesis takes place in [RPMT 1995]
	(d) Plant having it have better photosynthesizing power than C_3 plants		(a) Cytoplasm (b) Chromoplast
60			(c) Chloroplast (d) Oxysome
60.	The entire reactions of C_4 pathway takes place in [WB JEE 2016]	10.	Chlorophyll a is absent in which of the following photosynthetic organism [BVP 2004]
	(a) Mesophyll and bundle sheath		(a) Cyanobacteria (b) Red algae
	(b) Vascular bundle and palisade tissue		(c) Brown algae (d) Bacteria
	the same of the second s	11.	Which of the following bacteria grow on isopropyl alcohol
			and convert it into acetone
	(d) Bundle sheath and endoplasmic reticulum		(a) Fermentative bacteria(b) Chemosynthetic bacteria
	Bacterial photosynthesis		(c) Photosynthetic purple non-sulphur bacteria
1.	Bacteria that uses chemical energy to fix ${\it CO}_2$ are known as		(d) Nitrifying bacteria
	[Odisha JEE 2010]	12.	Bacterial photosynthesis involves [KCET 2004]
	(a) Chemoautotroph (b) Photoautotroph		(a) Both PS–I and PS–II (b) Either PS–I or PS–II
	(c) Heterotroph (d) None of these		(c) PS-I only (d) PS-II only

Get More Learning Materials Here :

13.	Which of the following photosynthetic bacteria have both	9.	Which are of it
Per l	PS-I and PS-II	9.	Which one of the photosynthesis
	Or Which was first photosynthetic organism [BVP 2004]		(a) Oxygen
	(a) Green sulphur bacteria (b) Purple sulphur bacteria		(c) Chlorophyll
	(c) Cyanobacteria (d) Purple non-sulphur bacteria	10.	If the rate of tran
			effect on photosyr
	Factors affecting photosynthesis		(a) It will increase
1.	Which of the following inhibits O_2 release in light phase		(c) Becomes dou
	[DPMT 2004]	11.	
	(a) PMA (b) Zeatin		maximum for pho
2.	(c) DCMU (d) None of these		Chl. a absorb's m
2.	Which factor is not limiting in normal conditions for photosynthesis [MHCET 2003]		(a) Red light
	(a) Air (b) CO ₂		(c) Green light
	(c) Water (d) Chlorophyll	12.	
3.	Blackman's law of limiting factor is applied to		decreased and is k
	[NCERT; RPMT 1999; AIIMS 2001]		(a) Blue light
	(a) Growth (b) Respiration		(b) Green light
	(c) Transpiration (d) Photosynthesis		(c) Red light more
4.	The algae found in high temperature ponds are capable of		(d) Red light less t
	doing photosynthesis upto (a) 30° C (b) 75° C	13.	Q_{10} refers to
	(a) 30° C (b) 75° C (c) 90° C (d) 100° C		(a) Quality quotie
5.	What is called Warburg's effect on photosynthesis		(c) Respiratory qu
	[MP PMT 2003]	14.	
	(a) Low rate of the process due to O_2 supply	1.1.	happen to it
	(b) Low rate of the process due to CO_2 supply		(a) Plant will die s
	(c) Both (a) and (b)		(b) Plant will grow
	(d) None of the above		(c) Plant will show
5.			(d) Respiration wil
	When $NaHCO_3$ is added in small quantity in an experiment showing photosynthesis, what will be the effect on it	15.	What will be the eff
	(a) Rate will be lowered (b) Rate will be increased		(a) It will increase
	(c) Rate will be normal (d) Process will stop		(c) Will not be effe
	The most effective wavelength of visible light in	16.	What will be the e
	photosynthesis is in the region of [CBSE PMT 1999;		supplied to a photo
	RPMT 1999; CPMT 2000, 10; MP PMT 2000, 10,11;		(a) Process will inc
	Kerala CET 2003; AFMC 2003; DPMT 2004]		(b) Process will de
	(a) Violet (b) Green		(c) Process will sto
	(c) Yellow (d) Red		(d) None of the ab
	Compensation point is [CPMT 1998, 99; AFMC 2002]	17.	Which of the follow
	(a) Where there is neither photosynthesis nor respiration		photophosphorylati
	(b) When rate of photosynthesis is equal to the rate of		(a) Anaerobic cond(b) Aerobic and op
	respiration		(c) Aerobic and log
			(d) Anaerobic and
	(c) When entire food synthesized into photosynthesis remain utilized	18.	Plants which can
			(upto -35° C) are
	(d) When there is enough water just to meet the		(a) Conifers
	requirements of plant		(c) Xerophytes

s in Higher Plants 681 NIVERSAL SOOK DEPOT 196 the following is not a limiting factor for [KCET 1999] (b) Carbon dioxide (d) Light nslocation of food is slow, what will be the nthesis (b) It will remain same se uble (d) It will decrease ollowing wavelength of light is absorbed otosynthesis Or nax of [MP PMT 2005] (b) Blue light (d) Yellow light following the rate of photosynthesis is known as red drop [MP PMT 1992] re than 680 nm than 680 nm [RPMT 1997] ent (b) Temperature quotient uotient (d) Quantum constant in 300ppm CO2 concentration, what will soon w but will not die w normal photosynthesis vill be greatly decreased ffect of intermittent light on photosynthesis (b) It will decrease 5 (d) Process will stop fected effect when very high intensity of light is osynthesis system crease ecrease op due to solarization bove owing conditions are favourable for cyclic tion [CPMT 1999] ndition ptimum light ow light intensity d low light intensity photosynthesize at as low temperature (b) Blue-green algae

(d) Tropical plants

🕀 www.studentbro.in

CLICK HERE

>>

19.	When a photosynthetic plant is transferred to an atmosphere of enriched O_2 , its rate of	5.	During light reaction in photosynthesis the following and formed [NCERT
	(a) Photosynthesis would increase		(a) ATP and sugar
	(b) Photosynthesis would decrease		(b) Hydrogen, O_2 and sugar
	(c) Respiration would decrease		(c) ATP, hydrogen donor and O_2
	(d) Osmosis would increase		(d) ATP, hydrogen and O_2 donor
20.	Under conditions of constant illumination, the compensation	6.	Dark reaction in photosynthesis is called so because
	period for a whole aquarium would be of infinite length	0.	Dark reaction in photosynthesis is called so because
	when		(a) It can occur in dark also
	(a) The biomass of animals equals the biomass of plants		(b) It does not depend on light energy
	(b) The respiratory exchanges of the animals are equal to		(c) It cannot occur during day light
	the photosynthetic exchanges of the plants		(d) It occurs more rapidly at night
	(c) The oxygen intake of the animals equals of oxygen output of photosynthesis	7.	When CO_2 is added to PEP, the first stable produc
	(d) The carbon dioxide output of the animals and plants		synthesized is [NCERT
2002	equals to the photosynthetic intake of the plants		(a) Pyruvate
21.	In nature the photosynthesis should proceed upto the		(b) Glyceraldehyde-3-phosphate
	limit of		(c) Phosphoglycerate
	(a) Light (b) Temperature		(d) Oxaloacetate
20	(c) CO_2 (d) Moisture and wind Which of the following would be prese if the surplu of O_1 is	8.	Splitting of water is associated with [NCERT
22.	Which of the following would happen if the supply of O_2 is decreased to an illuminated wheat plant		(a) Photosystem I
	(a) Its photosynthesis would decrease		(b) Lumen of thylakoid
	(b) Its respiration would increase	N	(c) Both Photosystem I and II
	(c) Its photosynthesis would increase		(d) Inner surface of thylakoid membrane
	(d) All the physiological process would stop	9.	The correct sequence of flow of electrons in the light reaction
23.	With reference to factors affecting the rate of photosynthesis,		is [NCER]
	which of the following statements is not correct [NEET 2017]		(a) PSII, plastoquinone, cytochromes, PSI, ferredoxin
	(a) Light saturation for CO ₂ fixation occurs at 10% of full		(b) PSI, plastoquinone, cytochromes, PSII, ferredoxin
	sunlight		(c) PSI, ferredoxin, PSII
	(b) Increasing atmospheric CO_2 concentration up to 0.05%		(d) PSI, plastoquinone, cytochromes, PSII, ferredoxin
	can enhance CO ₂ fixation rate	10.	The enzyme that is not found in a C_3 plant is [NCERT
	(c) C_3 plants respond to higher temperatures with		(a) RuBP Carboxylase (b) PEP Carboxylase
	enhanced photosynthesis while C ₄ plants have much lower temperature optimum		(c) NADP reductase (d) ATP synthase
	 (d) Tomato is a greenhouse crop which can be grown in CO₂ enriched atmosphere for higher yield 	11.	The reaction that is responsible for the primary fixation of CO_2 is catalysed by [NCERT
	CO ₂ enriched autosphere for higher yield		(a) RuBP carboxylase
			(b) PEP carboxylase
	NCERT		(c) RuBP carboxylase and PEP carboxylase
			(d) PGA synthase
	Exemplar Questions		
ι.	Which metal ion is a constituent of chlorophyll [NCERT]		Gritical Thinking
	(a) Iron (b) Copper (c) Magnesium (d) Zinc		Objective Overtiens
2.	Which pigment acts directly to convert light energy to		Objective Questions
	chemical energy [NCERT]	1.	Which is the evidence to show that O_2 is released in
	(a) Chlorophyll a(b) Chlorophyll b(c) Xanthophyll(d) Carotenoid		photosynthesis comes from water
3.	Chemosynthetic bacteria obtain energy from [NCERT]		(a) Isotopic O_2 supplied as H_2O appears in the O_2 released
	(a) Sun (b) Infra red rays		in photosynthesis
	(c) Organic substance (d) Inorganic chemicals		(b) Isolated chloroplast in water releases O_2 if supplied
ι.	Energy required for ATP synthesis in PSII comes from		potassium ferrocyanide or some other reducing agent
	[NCERT]		(c) Photosynthetic bacteria use H_2S and CO_2 to make
	(a) Proton gradient (b) Electron gradient		carbohydrates
	(c) Reduction of glucose (d) Oxidation of glucose		(d) All the above

Get More Learning Materials Here :

			Photosynthesis in Higher Plants 683
2.	What effect would occur on photosynthesis, if the amount of oxygen in the atmosphere decreases [RPMT 1997] (a) Increase in C_3 cycle and decrease in C_4 cycle (b) Increase in C_4 cycle and decrease in C_3 cycle (c) Increase in C_3 cycle and no change in C_4 cycle	9.	Which of the following can photosynthesize at low temperature (-20° C) (a) Bacteria (b) Lichen (c) Yeast (d) Batrachospermum
3.	(d) Increase in C_4 cycle and no change in C_3 cycle Read the following four statements (A-D)	10.	The electron transport chain of photosynthetic process is [JIPMER 2002
	(A) Both, photophosphorylation and oxidative phoshorylation involve uphill transport of protons across the membrane(B) In dicot stems, a new cambium originates from cells of		(a) In the stroma of the chloroplast(b) Bound to the thylakoid membranes(c) Present in the outer membrane of the chloroplast
	pericycle at the time of secondary growth (C) Stamens in flowers of <i>Gloriosa</i> and <i>Petunia</i> are polyandrous	11.	 (d) Present in mitochondria What percentage of usable radiant energy entering a reaction site of photosynthesis is converted to potentia
	(D) Symbiotic nitrogen-fixers occur in free-living state also in soil		energy [BHU 2002 (a) 10% (b) 20%
	How many of the above statements are right [CBSE PMT (Mains) 2012] (a) Two (b) Three	12.	(c) 35% (d) 42% Chlorophyll 'a' is found in [CBSE PMT 1992] (a) All oxygen releasing photosynthetic forms
	(c) Four(d) OneWhich of the following may show photosynthesis in moonlight		(b) All plants except fungi(c) All higher plants that photosynthesize
	 (a) Some thermal algae (b) Some marine algae (c) Some fresh water algae (d) None of the above 	13.	(d) All photosynthetic prokaryotes and eukaryotes The empirical formula for chlorophyll 'a' is
	, 4H⁺		[KCET 1994, 2000; AFMC 1994] Wardha 2005; J & K CET 2008; WB JEE 2016
	4H ₂ O		(a) $C_{35}H_{72}O_5N_4Mg$ (b) $C_{55}H_{70}O_6N_4Mg$ (c) $C_{55}H_{72}O_5N_4Mg$ (d) $C_{54}H_{70}O_6N_4Mg$
	¥ 40H-	14.	Which of the following is wrongly matched
	In this process which of the following play important role [GUJCET 2015; MHCET 2015]		(a) Sorghum - Kranz Anatomy
	(a) Chlorophyll(b) Light energy(c) Ca^{++}, Mn^{++}, Cl^{-} (d) All of the above		(b) PEP carboxylase - Mesophyll cells (c) Blackman - Law of limiting factors
	Chloroplast contains maximum quantity of [BCECE 2005, 06]		 (d) Photorespiration - C₃ plants (e) PS II - P700
	 (a) Pyruvic carboxylase (b) Hexokinase (c) RuBP carboxylase (d) None of the above 	15.	Chlorophyll 'a' molecule at its carbon atom 3 of the pyrrole ring II has one of the following [CBSE PMT 1996, 97]
	What is common between photosynthesis and respiration [MP PMT 1993, 96, 2003, 06; BHU 1995; AFMC 1995; Haryana PMT 2005; MH CET 2005; DPMT 2006; KCET 2006]	16.	 (a) Aldehyde group (b) Methyl group (c) Carboxylic group (d) Magnesium Bacteriochlorophyll differs from chlorophyll 'a' in having
	(a) Cytochrome (b) Light		 (a) One pyrrol ring with one hydrogen (b) One pyrrol ring with two hydrogen
	 (c) H₂O (d) Temperature Photosynthesis is [NCERT; MH CET 2002; Odisha JEE 2012; MP PMT 2013] (a) Oxidative, exergonic, catabolic 	17.	 (b) One pyrrol ring with two hydrogen (c) One pyrrol ring with three hydrogen (d) One pyrrol ring with four hydrogen In photosynthesis, photolysis of water is used in
	(b) Reductive, endergonic, anabolic(c) Reductive, exergonic, anabolic		In photosynthesis, photolysis of water is used in [CPMT 1998]
	(d) Reductive, endergonic, catabolic		 (a) Reduction of NADP (b) Oxidation of NADP (c) Oxidation of FAD (d) None of these

Get More Learning Materials Here : 📕

Regional www.studentbro.in

IVERSAL OK DEPOT 1

684 Photosynthesis in Higher Plants

18. C₄ plants are found among

(c) Dicots only

- (a) Gramineae only
- (b) Monocots only
- (d) Monocots as well as dicots
- 19. Energy transfer in photosynthesis occurs as [BHU 2003]
 - (a) Phycoerythrin → Phycocyanin → Carotenoid → Chlorophyll a
 - (b) Chlorophyll $b \rightarrow$ Carotenoid \rightarrow Phycoerythrin → Chlorophyll a
 - (c) Phycocyanin \rightarrow Phycoerythrin \rightarrow Carotenoid → Chlorophyll a
 - (d) Chlorophyll → Carotenoid → Phycocyanin → Chlorophyll a
- 20. Photosynthesis consists of essentially two biological reaction systems, one followed by the other, the second of these systems does which of the following
 - (a) Fixes CO,
 - (b) Traps light energy
 - (c) Synthesizes starch
 - (d) Works only in the presence of light
- 21. During dark reaction for fixation of carbon, the three carbon atoms of each molecule of 3-phosphoglyceric acid (PGA) are derived from [BHU 1994]
 - (a) RuBP only (b) CO₂ only (c) $RuBP + CO_2$ (d) $RuBP + CO_2 + PEP$
- 22. Calvin's cycle is found in [RPMT 1997]
 - (a) Only C3 plants (b) Only photophillous plants
 - (c) All C₄ plants (d) All photosynthetic plants
- The first intermediate formed during photosynthesis is 23.

[CPMT 2000]

- (a) Fructose 1, 6-diphosphate (b) Ribulose 1, 5-biphosphate
- (c) Xylulose-5-phosphate
- (d) Phosphoglyceraldehyde
- 24. First transitory chemical formed by reaction between CO2 and RuBP is [J & K CET 2002]
 - (a) PGAL/GAP
 - (b) 2-Carboxy, 3- keto, 1-5-biphospho ribotol
 - (c) PGA
 - (d) Dihydroxy acetone phosphate
- 25. As compared to a C_3 plant, how many additional molecules of ATP are needed for net production of one molecule hexose sugar by C_4 plants [CBSE PMT 2005]

(b) Six

(d) Twelve

- (a) Two
- (c) Zero

26. Three of the graphs below show the absorption spectra of photosynthetic pigments. One graph shows the action spectrum of photosynthesis for a plant containing the pigments.

Plasmo-desmata

	Chlorophyll a	Absorption Chlorophyll b	Spectra Carotenoids	Action spectrum
(a)	3	2	4	1
(b)	2	4	3	1
(c)	2	1	3	4
(d)	1	4	3	2

Wavelength / nm

pathway ATP synthesis 27. Observe the of through chemiosmosis given below

Select the right answer in which correct words for all the four blanks A, B, C and D are indicated INCERTI

- (a) A Fo, B Thylakoid membrane, C Photosystem (II), D - Photosystem (I)
- (b) A F1, B Thylakoid membrane, C Photosystem (II), D - Photosystem (I)
- (c) A F₀, B Thylakoid membrane, C Photosystem (I), D Photosystem (II)
- (d) A F₁, B Thylakoid membrane, C Photosystem (I), D Photosystem (II)

				Photosyn	cne	esis in Higher Plants 685
28.		nores take part in [AIPMT 2015]	6.	Assertion	:	C_4 photosynthetic pathway is more
	(a) Growth					efficient than the C_3 pathway.
	(c) Respira			Reason	:.	Photorespiration is suppressed in C_4 plant
29.	In a chlorop	last the highest number of protons are found in	7.	Assertion	:	CAM plants lack structural compartmentation
	(a) Stroma	[NEET (Phase-I) 2016]				of leaf, as found in C_4 plants.
		of thylakoids		Reason	:	Stomata of CAM plants are open durir
	(c) Inter m	embrane space				the day.
	(d) Antenn	a presentation and a second	8.	Assertion	:	Plants utilizing first RuBP in CO2 fixation
30.		esis cannot be operated in [WB JEE 2016]				are called C_3 plants.
	(a) Red light(c) Green l			Reason	:	Plants utilizing first PEP in CO ₂ fixation
_	(c) Green	ight (d) Blue light				are called C_4 plants.
			9.	Assertion	:	Cyclic pathway of photosynthesis fir
	AD A	ssertion & Reason		P		appeared in some eubacterial species.
	11			Reason	:	Oxygen started accumulating in th
Read	the assertion	and reason carefully to mark the correct option				atmosphere after the non-cyclic pathway of photosynthesis evolved. [AIIMS 2004, 07
	f the options		10.	Assertion		The stromal thylakoids are rich in both PS
(a)	If both the	assertion and the reason are true and the reason		1 Boernon	i	and PS II.
		explanation of the assertion		Reason	:	The granal membranes are rich in AT
(b)		assertion and reason are true but the reason is				synthetase.
		t explanation of the assertion	11.	Assertion	:	Cyclic photophosphorylation synthesize
(c)		on is true but the reason is false				ATP.
(d) (e)		ssertion and reason are false on is false but reason is true		Reason	:	ATP synthesize in cyclic photophosphorylatio
1.	Assertion					is not associated with NADPH formation.
*•	risseriion	: C_4 pathway of CO_2 fixation is found in some tropical plants.	12.	Assertion	:	Oxidative phosphorylation requires oxygen.
	Reason	In this pathway CO_2 is fixed by 3C		Reason	:	Oxidative photophosphorylation occurs in
	neason	compound. [AIIMS 1998]	10	A		mitochondria.
2.	Assertion		13.	Assertion	:	Each molecule of ribulose-1, 5-biphosphat fixes one molecule of CO ₂ .
	1 issertion	Six molecules of CO_2 and twelve molecules of $NADPH^++H^+$ and 18 ATP are used to		Reason	:	Three molecules of NADPH and two ATP ar
		form one hexose molecule.	14.	Assertion		required for fixation of one molecule of CO_2 .
	Reason	Light reaction results in formation of ATP	14.	Assention	+	CO_2 is transported from mesophyll cells to bundle sheath of chloroplasts in C_4 plants.
	neuson	and NADPH ₂ [AIIMS 2002]		Reason	:	<i>RuBP</i> is called final acceptor of CO_2 in C
3.	Assertion					plants.
	Assention	Rhoeo leaves contain anthocyanin pigments in epidermal cells.	15.	Assertion	:	One molecule of CO_2 is fixed to give 680
	Reason			Reason		kcal in photosynthesis.
	neason	Anthocyanins are accessory photosynthetic pigments. [AIIMS 2003]		neason	•	To form a hexose, six molecules of CO_2 are fixed.
1.	Assertion		16.	Assertion	:	In the formation of one glucose, 686,000
••	i issertion	There is a decrease in photosynthesis, if the photosynthetic cells are illuminated by light				calories energy are produced.
		of P_{680} nm or more wavelength.		Reason	:	The energy is provided by a total of 12
	Reason	In red drop phenomenon the rate of	17.	Assertion	:	NADPH and 18 ATP.
	. icusoff	photosynthesis decreases.	17.	7 13501 11011		Sciophytes require higher light intensity than heliophytes.
5.	Assertion	The concentration of O_2 in the atmosphere		Reason	:	Sciophytes grow below the canopy of trees
		is inhibitory to photosynthesis.	18.	Assertion	:	Plants utilize 5-10% of the absorbed wate
						in photosynthesis.
	Reason :	Oxygen inhibitory effect is due to Warburg		Reason		Reduced leaf hydration decrease the

Get More Learning Materials Here : 📕

Regional www.studentbro.in

UNIVERSAL BOOK DEPOT 1960 686 Photosynthesis in Higher Plants

TA						
A	5	01		0	-	0
1		5	W	P		5
Land B	AA	V	WW	C	A	
			-	(manadari		

	-	His	story	ofp	hotos	synth	esis		in the
1	a	2	b	3	c	4	a	5	a
6	b	7	d	8	d	9	d	10	b
11	d	12	c	13	a	14	c	15	a
16	b	-			112.2	and and		- BARRES	1

-	Experiments											
1	b	2	d	3	a	4	a	5	d			
6	b	7	b	8	d	9	b	10	a			
11	a	12	b	13	c	26.3						

-	distant in	Pł	iotos	ynthe	etic a	ppar	atus		-
1	a	2	b	3	d	4	b	5	b
6	e	7	b	8	a	9	b	10	d
11	c	12	d	13	b	14	e	15	c
16	d	17	b	18	d	19	b	20	b
21	c	22	b	23	d	24	d	25	a
26	a	27	a	28	a	29	a	30	b
31	d	32	b	33	d	34	c	35	b
36	b	37	d		Contra 1	-	100		

	and the second		.ight	react	ion/F	Pigme	nts		
1	c	2	a	3	b	4	c	5	b
6	a	7	b	8	a	9	b	10	d
11	a	12	c	13	d	14	a	15	b
16	b	17	c	18	d	19	b	20	a
21	d	22	b	23	b	24	d	25	d
26	a	27	a	28	c	29	c	30	b
31	a	32	b	33	b	34	d	35	a
36	d	37	c	38	c	39	c	40	c
41	a	42	a	43	a	44	c	45	a
46	c	47	c	48	d	49	с	50	b

	-	and the second			and the second		113	in the second	
51	b	52	c	53	a	54	c	55	c
56	a	57	а	58	a	59	d	60	c
61	a	62	c	63	C	64	c	65	a
66	b	67	d	68	d	69	b	70	b
71	a	72	b	73	d	74	a	75	d
76	b	77	b	78	а	79	c	80	b
81	c	82	с	83	b	84	b	85	c

- 14			I	Dark I	react	ion			
1	c	2	a	3	a	4	c	5	d
6	c	7	d	8	b	9	d	10	d
11	b	12	c	13	a	14	b	15	b
16	a	17	b	18	а	19	a	20	d
21	c	22	b	23	b	24	c	25	c
26	c	27	а	28	d	29	c	30	b
31	b	32	b				10-10	(In the	197

-	GAMADO	С	₄/CA	M/Ph	otore	spira	tion		
1	d	2	d	3	b	4	d	5	b
6	b	7	c	8	c	9	а	10	d
11	d	12	b	13	d	14	d	15	a
16	b	17	d	18	а	19	b	20	c
21	b	22	a	23	d	24	b	25	b
26	a	27	b	28	b	29	a	30	c
31	c	32	b	33	a	34	c	35	d
36	b	37	d	38	b	39	a	40	b
41	d	42	d	43	b	44	a, e	45	c
46	a	47	C	48	d	49	c	50	a
51	C	52	d	53	b	54	b	55	b
56	c	57	b	58	c	59	b	60	a

	Bacterial photosynthesis											
1	a	2	b	3	b	4	a	5	a			
6	d	7	c	8	C	9	а	10	d			
11	с	12	c	13	с			-				

Get More Learning Materials Here :

Regional www.studentbro.in

Factors affecting photosynthesis												
1	c	2	d	3	d	4	b	5	a			
6	b	7	d	8	b	9	a	10	d			
11	b	12	c	13	b	14	c	15	a			
16	c	17	d	18	а	19	b	20	d			
21	b	22	c	23	c							

		NC	ERT	Exen	plar	Ques	stions	5	+
1	c	2	а	3	d	4	а	5	c
6	а	7	d	8	d	9	а	10	b
11	c					n bein			

		Cri	tical	Think	king	Ques	tions		-
1	d	2	c	3	a	4	b	5	d
6	c	7	a	8	b	9	b	10	b
11	c	12	a	13	c	14	e	15	b
16	b	17	a	18	d	19	c	20	a
21	c	22	d	23	d	24	b	25	d
26	d	27	а	28	d	29	b	30	с

Lan	0.0		Asse	rtion	and	Reas	on		
1	b	2	b	3	. c	4	b	5	a
6	а	7	c	8	b	9	b	10	d
11	b	12	b	13	c	14	e	15	e
16	a	17	e	18	e		1.200		-

Answers and Solutions

History of photosynthesis

- (a) Blackman propounded the law of limiting factors. He also proposed the occurrence of a dark phase in photosynthesis.
- 3. (c) The discovery of Emerson effect. One group of pigments absorbs light of both shorter and longer wavelengths (more than 680nm) and another group of pigment absorbs light of only shorter wavelengths (less than 680nm). These two groups of pigments are known as pigment systems or photosystems.

Photosynthesis in Higher Plants 687

- UNIVERSAL BOOK DEPOT 1960
- (a) Malvin Calvin (1954) traced the pathway of carbon in photosynthesis and gave the C₃ cycle, (now known after him as calvin cycle). He was awarded Nobel prize for this work in 1960.
- (a) Malvin calvin and his coworkers in 1954 by using the methods of radio active tracer technique, chromatography and Autoradiography.
- 6. (b) Arnon etal. (1954) first of all demonstrated that isolated chloroplasts can produce ATP from ADP+ip and they called this ATP production as photophosphorylation.
- (d) Pelletier and Caventou (1818) discovered chlorophyll. It could be separated from leaf by boiling in alcohol.
- (d) Robert Mayer (1845) proposed that light has radiant energy and this radiant energy is converted into chemical energy by plants, which serves to maintain life of the plants and also animals.
- (d) Thylakoids (Menke, 1961) or baggy trousers are structural elements of chloroplast.
- (b) According to Jan Ingen-Housz (1779), both green parts and sunlight are required for air purification and plant nourishment.
- (d) Bousingault (1860) reported that amount of O₂ evolved in photosynthesis is equal to amount of CO₂ absorbed and both these processes occur simultaneously as soon as light is given.
- (c) Helmont concluded that "all food of the plant is derived from rain water and not from soil and all parts of the plant develop from water".
- 14. (c) Hatch and Slack (1965) discovered the C_4 pathway for CO_2 fixation in certain tropical grasses.
- 15. (a) In 1930 C.B. Van Niel proved that, sulphur bacteria use H_2S (in place of water) and CO_2 to synthesize carbohydrates as follows :

 $6CO_2 + 12H_2S \longrightarrow C_6H_{12}O_6 + 6H_2O + 12S$

This led Van Niel to the pastulation that in green plants, water (H_2O) is utilized in place of H_2S and O_2 is evolved in place of sulphur (S). He indicated that water is electron donar in photosynthesis.

 $6CO_2 + 12H_2O \longrightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$

Experiments

- (d) Both blue and red wavelength are affective because the amount of oxygen released was found to be maximum in blue and red absorption bands of the chlorophyll.
- (a) During photosynthesis O₂ evolved by the hydrolysis of water. If H₂O¹⁸ is used in 'A' plant then it become true that O¹⁸ type oxygen evolved from 'A' plant during photosynthesis.

Get More Learning Materials Here :

UNIVERSAL BOOK DEPOT 1960

688 Photosynthesis in Higher Plants

- 4. (a) C^{14} isotope used for knowing carbon path and O^{18} used for verified that source of O_2 in photosynthesis is H_2O , not CO_2 .
- (b) Ruben and Kamen used C¹⁴ radioactive isotopes in chlorella for knowing path of carbon in photosynthesis.
- 9. (b) Calvin traced the path in photosynthesis associated with dark reaction. Radioactive isotope of carbon (C¹⁴) is used, it is observed that (C¹⁴O₂) reduction of CO₂ is definitely in dark reaction.
- (a) Calvin used isotopes C¹⁴ in chlorella for knowing carbon path in photosynthesis. Chlorella is a unicellular alga is using by Ruben Kamen and warburg. Because algae carry out 90% of photosynthesis.
- (a) Photolysis occur in presence of light quanta and requires Mn⁺⁺ and Cl⁻ ions as catalyst for water oxidising.

 $4H_2O \xrightarrow{Mn^{++}Cl^-} 4(OH)^- + 4H^+$

Then *H* radicle forms water and O_2 as a by product $4OH \longrightarrow 2H_2O + O_2 \uparrow$

 (b) Emerson and Arnold proved the existence of light and dark reaction by flashing of light experiment in photosynthesis.

Photosynthetic apparatus

 (a) In Etiolation, chlorophyll (green) converts in protochlorophyll (yellow) in dark, etiolin hormone is formed due to which plants become elongated.

> Chlorophyll $\xrightarrow{\text{Dark}}$ Protochlorophyll + 2H (green) Light (yellow)

(b) Photosynthesis by plants is most vital process for the existence of life on earth because photosynthesis helps to maintain the equilibrium position of O₂ and CO₂ in the atmosphere. It purifies the air and synthesize food for all living beings.

1. (b)
$$6CO_2 + 12H_2O \xrightarrow{\text{Sunlight}} C_6H_{12}O_6 + 6O_2 + 6H_2O$$
.

- (b) When photon of light energy falls on chlorophyll molecule, one of the electrons pair from ground or singlet state passes into higher energy level called excited singlet state.
- 7. (b) The main function of chloroplast is photosynthesis, in which radiant energy of sun is converted into chemical form of energy (ATP), which is utilized by all living organisms to perform their life activities.
- (a) The addition of phosphate group to ADP and AMP called phosphorylation.

 $ADP + iP \longrightarrow ATP$

By this process ATP is formed which is used in dark reaction.

- (b) Photosynthesis reaction shows that "formation of carbohydrates from CO₂ and H₂O by illuminated green cells of plants, O₂ and H₂O are the bye products.
- 15. (c) 90% of total photosynthesis is carried out by aquatic plants, chiefly algae (80% in oceans and 10% in fresh water). 10% of total photosynthesis is performed by land plants.
- (b) ATP is formed during photophosphorylation after this reaction NADPH₂ and ATP move in dark reaction it is known as assimilatory power.

19. (b)
$$CO_2 + 2H_2O \xrightarrow{\text{Light energy}} (CH_2O)_n + H_2O + O_2 \uparrow$$

Chlorophyll

- (b) Rubisco constitutes 16% of chloroplast protein. It is the most abundant protein on this planet.
- (d) Only 1-4% light is utilized in photosynthesis. In general rate of photosynthesis is more in intense light than diffused light.
- 24. (d) Photosynthesis is an oxidation reduction process where H_2O is oxidized by photolysis into O_2 and CO_2 is reduced into carbohydrates.
- (a) Arnon (1956) used the term 'Assimilatory powers' for ATP and NADPH₂. (NADPH₂ alone is called reducing power).
- **29.** (a) Sugarcane is C_4 plant. The chloroplasts in C_4 leaves are dimorphic (Two morphologically distinct types). The chloroplasts of bundle sheath cells contain starch grains but lack grana. The mesophyll cells on the other hand, contain normal type of chloroplasts.
- **32.** (b) Because CO_2 is utilized in photosynthesis process by plants.
- **34.** (c) Burning of sugar, respiration in plants and heating of limestone is responsible for the liberation of CO_2 but in photosynthesis green plants take in CO_2 and release O_2 thus purifying the air.
- 35. (b) Park and Biggins (1964) gave the term quantasome for photosynthetic units is equivalent to 230 chlorophyll molecules.
- 36. (b) ATP (adenosine triphosphate) is called energy currency of cells. ATP is energy rich compound where energy is present in terminal pyrophosphate bonds.
- 37. (d) Light, chlorophyll, CO₂ and water all are essential in photosynthesis. In photosynthesis process energy rich compounds like carbohydrates are synthesized from simple inorganic compounds like carbon dioxide and water in the presence of chlorophyll and sunlight with liberation of O₂.

Light reaction/Pigments

- (c) The splitting of water during photosynthesis is called photolysis. *Mn* and *Cl* plays important role in photosynthesis specially light reaction of photosynthesis in splitting of water.
- (b) Chlorophyll-a is widely distributed in green plant and it is also called primary photosynthetic pigment and universal photosynthetic pigment.

Get More Learning Materials Here :

- (a) The chloroplast pigment are fat soluble and are located in the lipid part of the thylakoid membranes.
- (d) Xanthophylls are yellow coloured carotenoid also called Xanthols or carotenols.
- 12. (c) Wavelength occur in red part of the spectrum is 650-760 nm.
- 33. (b) Non cyclic photophosphorylation involved both PS-I and PS-II. Flow of electrons is unidirectional. Here electrons are not cycled back and are used in the reduction of NADP to NADPH₂.
- 37. (c) Chl.-a 700 or P₇₀₀ is the reaction centre of PS-I.
- 38. (c) The colours of leaves is modified in certain plants due to the presence of purple pigment called anthocyanins. Anthocyanins are soluble in water, hence they occur in solution in the water of the cells.
- (a) Chlorophyll a is widely distributed in green algae and higher plants.
- 49. (c) During light reaction energy from sunlight is absorbed and converted into chemical energy which is stored in ATP and NADPH + H⁺.
- 50. (b) Core metal of chlorophyll is Mg. When central Mg is replaced by Fe, the chlorophyll becomes a green pigment called "cytochrome" which is used in photosynthesis.
- **52.** (c) Phosphate is coupled with ADP to produce ATP using light energy during photosynthesis.
- 53. (a) Cytochromes are systems of electron-transferring proteins, with iron-porphyrin or copper-porphyrin as prosthetic groups.
- 55. (c) Photolysis means splitting of water molecules to release oxygen. This occurs in photosynthesis, *i.e.*, Photosystem–II.
- (a) Chlorophyll is soluble in organic solvents like alcohol, acetone etc.
- 57. (a) Green plants and algae use two types of photosystems, PS-I with chl. P₇₀₀ in its reaction centre and PS-II with P₆₈₀ in its reaction centre. The two photosystems are linked by a chain of electron carriers. Light excites P₆₈₀ of PS-II to activated P₆₈₀.
- 58. (a) This non-cyclic photophosphorylation is also known as Z-Scheme (because of shape of path of electron – flow) and this was given by Hill and Bendall (1960).
- **61.** (a) The reaction centers of PS–I and PS–II can be denoted as P_{700^+} and P_{680^+} respectively. Positively charged reaction centers act as attractants for electrons.
- 63. (c) The important pigments of this system are chlorophyll a 670, chlorophyll a 683, chlorophyll a 695, P₇₀₀. Some physiologist also include carotenes and chlorophyll b in pigment system I. P₇₀₀ act as the reaction centre.

64. (c) Light energy brings about changes in Mn (Mn²⁺, Mn³⁺, Mn⁴⁺) which helps in removing electrons from OH⁻ component of water forming oxygen.

NIVERSAL

- 65. (a) Robert Hill (1939) first of all showed that if chloroplasts extracted from leaves of stellaria media and Lamium album are suspended in a test tube containing suitable electron acceptor e.g., potassium ferrooxalate and potassium ferricyanide, O₂ is released due to photochemical splitting of water.
- **69.** (b) During light reaction not only reduced NADP is formed and O_2 is evolved but ATP is also formed. This formation of high energy phosphates (ATP) is dependent on light hence called photophosphorylation.
- 71. (a) Non cyclic photophosphorylation involves both PS-I and PS-II. The process begins with the absorption of light energy by PS-II. As light energy is absorbed, 4e⁻ become excited from chlorophyll –a at the reaction centre. The 4e⁻ released by these molecules are accepted by an electron acceptor substance. The other effect of this event is that photolysis of water is induced. The chlorophyll-a molecules in PS-II act as strong oxidising agent. As described earlier, 4 molecules of H₂O are thus decomposed through light-induced-energy. The 4H⁺ ions become associated with 2 NADP. The 4 OH⁻ ions are associated with the release of oxygen. The four electrons (4e⁻) released from 4 OH⁻ are received by chlorophyll-a molecules at reaction-centre of PS-II.
- 72. (b) The photosystem-II (Reaction centre of P-680) extracts an e⁻ from water returning to its unexcited state. The removal of four e⁻ from two molecules of water requires 4 quanta of light to fall on PS-II and leads to the production of 4H⁺ ions and one molecule of O₂.
- 79. (c) The absorption spectrum of chlorophyll a and chlorophyll b indicate that these pigments mainly absorb blue and red lights. Action spectrum shows that maximum photosynthesis takes place in blue and red regions of spectrum.
- 80. (b) The figure denotes non-cyclic photophosphorylations that involves both PS-I (reaction centre-700) and PS-II (reaction centre-680). The electrons released from PS II is not cycled back but is transported to PS-I through a series of chemical compounds. Before reaching PS-I, the electrons pass through plastocyanin.

Dark reaction

 (c) Dark reaction was first of all established by Blackman that's why it is called Blackman's reaction.

UNIVERSAL

690 Photosynthesis in Higher Plants

9.

- (d) Dark reaction takes place in bundle sheath (because RuBISCO present in stroma of chloroplast of bundle sheath).
- 12. (c) A- Fixation of CO2 by PEPCO
 - **B-**Decarboxylation
 - C- Regeneration
- (a) Ribulose 1, 5–diphosphate carboxylase enzyme is first enzyme of Calvin cycle convert Ribulose-1, 5 diphosphate into 3–phosphoglyceric acid.
- (b) During photosynthesis PGA is reduced by NADP. 2H into phosphoglyceraldehyde.
- 16. (a) Calvin cycle occurs in the stroma of chloroplasts where the products of light reaction (assimilatory power NADP.2H + ATP) are used to form CO₂ to carbohydrate and it has enzymes essential for fixation of CO₂ and synthesis of sugar.
- 17. (b) The new name of dark reaction is carbon assimilation, in which CO_2 gas reacting with H_2O (liquid) synthesizes solid glucose.
- 18. (a) In C₃ cycle, in presence of rubisco (*RuBP* carboxylase) CO₂ combines with ribulose 1, 5-bisphosphate (acceptor molecule) to form 3-phosphoglyceric acid or 3-PGA which is the first stable product of carbon reduction cycle.
- 23. (b) As Calvin cycle takes only one carbon (as CO₂) at a time. So it takes six turns of the cycle to produce a net gain of one hexose or glucose.
- 25. (c) Reductive carboxylation start with a 5 carbon sugar ribulose – 5 phosphate. 6 mol of this sugar react with 6 mol of ATP (produced in light reaction) to form 6 mol of RuBP and 6 mol ADP

Ribulose - 5 phosphate Phosphopentokinase

Ribulose 1, 5-biphosphate + 6ADP

- (c) Ribulose 1, 5-diphosphate (also known as ribulose biphosphate) a phosphorylated 5 carbon sugar (pentose sugar) it is first attached with CO₂ in photosynthesis.
- 31. (b) Calvin cycle is divided into three distinct phase but carboxylation occur only one time.

C₄/CAM/Photorespiration

 (d) This pathway was first reported in members of family gramineae (grasses) like sugarcane, maize etc. More than 300 species belong to dicots and the rest belong to monocots. There are no known C₄ gymnosperms, bryophytes or algae.

- (a) Photorespiration is a process of respiration which takes place in the presence of light and in chloroplasts only. In this process, first of all *RuBP* is oxygenated in presence of O_2 . Then, 1 molecule of a 2-C phosphoglycolate and 1 mol. of a 3C PGA are formed from it. The PGA molecule is used in the Calvin cycle. Phosphoglycolate is dephosphorylated and glycolate is formed. Glycolate diffuses out of chloroplast and enters the organelle called peroxisome. Here it is oxidized and becomes glyoxylate. Glyoxylate is used in synthesis of glycine.
- (d) Photorespiration is quite different from respiration as no ATP or NADH are produced, the energy released being lost as heat. Moreover, the process is harmful to plants because as much as half the photosynthetically fixed CO₂ (in the form of RuBP) may be lost into the atmosphere through this process.
- 18. (a) One of the basic features of C₄ plants is that CO₂ is trapped by a CO₂ acceptor, phosphoenol pyruvic acid present in the (PEP) chloroplasts of mesophyll cells of these leaves, leading to the formation of a 4-C compound oxaloactic acid.
- (b) In Hatch-Slack pathway, first product of CO₂ fixation is a 4 carbon compound, oxaloacetic acid hence they are called C₄ plants. This acid is converted to another 4-C acid, the malic acid.
- (c) Basic feature of C₄ plants is the occurrence of "Kranz" (German term meaning halo or wreath) type of leaf anatomy. The vascular bundles, in C₄ leaves are surrounded by a layer of bundle sheath cells that contain large number of chloroplasts. The chloroplast in C₄ leaves are dimorphic (Two morphologically distinct type).
- (d) Photorespiration is absent in C₄ plants due to presence of kranz anatomy.
- 27. (b) These are succulent plants with water storing cells.
- **28.** (b) In C_4 plants agranal chloroplast occur in bundle sheath.
- 29. (a) In C₄ plants initial CO₂ fixation occurs in Mesophyll cells. As a result malic acid is formed. This malic acid is transfermed in Bundle sheath chloroplast where it is decarboxylated.
- **30.** (c) C_3 and C_4 cycle both occurs in panicum milioides hence it stand intermediate between C_3 and C_4 plants.
- **32.** (b) C_4 plants utilise solar energy most efficiently. Because photosynthesis rate is very high in C_4 plants *e.g.*, Sugarcane, maize etc.
- 33. (a) In crassulacean acid metabolism (CAM) plants large amount of acid like malic acid etc. are synthesized at night. The stomata remain closed the day time but remain open at night. CAM plants are succulent drought evading plants.

Get More Learning Materials Here :

(b) In CAM plants there is no kranz anatomy, but there occurs dark acidification, *i.e.*, during night malic acid is formed. This malic acid breaks up into CO₂ and pyruvic acid in day time and CO₂ released is utilized in C-3 cycle.

- 40. (b) In 1965 kortschak, Hart and Burr working with C¹⁴O₂ on sugarcane leaves found C₄ dicarboxylic acid, malate and aspartate to be the major labelled products in very short periods of photosynthesis. This observation was confirmed by M.D. Hatch and C.R., Slack in 1967. The Hatch-slack pathway, as this alternative CO₂ fixation is called, has been found to occur in tropical and sub-tropical grasses and some dicotyledons.
- **46.** (a) In C_4 plants poor supply of CO_2 . Because there is a internal supply of CO_2 . So these plants can survive in poor CO_2 conditions.
- **47.** (c) Phosphoenol pyruvic acid carboxylase fixed CO_2 in sugarcane. Due to this enzyme PEP + CO_2 converted into oxaloacetic acid.
- **48.** (d) Photorespiration is absent in C_4 plants.

38.

- **50.** (a) PCO or photorespiration is also called C_2 cycle as there is synthesis of 2-carbon compound.
- 51. (c) Three conditions are required for photorespiration (1) High O₂ concentration (2) Low concentration of CO₂ (3) High light intensity. During photorespiration oxygenation takes place firstly.
- 52. (d) Glyoxylate is used to form glycine, glycine enters in mitochondria where two glycine molecules give rise to one molecule of serine and one CO₂.
- **53.** (b) Two times carboxylation occur in C_4 cycle, first carboxylation is done by phosphoenole pyruvate and second in bundle sheath cell by Ribulose 1, 5 biphosphate.
- 54. (b) Bundle sheath chloroplast larger in size, lack grana (Agranal chloroplast) and contain starch grains. Mesophyll chloroplast small in size, contain grana and lack starch grains.
- (b) The process of photorespiration involves the involvement of chloroplast, peroxysome and mitochondria.

Bacterial photosynthesis

 (b) Chemosynthetic bacteria are able to manufacture all their organic food from inorganic raw material in the absence of light.

 $6CO_2 + 24 \text{ [H]} \xrightarrow{\text{Enzymes/Energy}} C_6H_{12}O_6 + 6H_2O_6$

(b) Like cyanobacteria, algae, autotrophic plants and photoautotrophic bacteria also use light energy for reducing CO₂ to organic compounds but water is never used as a source of electrons in bacteria. Hence, oxygen is never evolved during bacterial photosynthesis.

Photosynthesis in Higher Plants 691

- (a) The bacterial pigments are however not contained in chloroplast but are present in structures called chromatophores.
- 5. (a) $CO_2 + 2H_2S \xrightarrow{\text{Sunlight}} (CH_2O) + 2S + H_2O + \text{Energy}$
- (d) Photosynthetic bacteria absorb (850-950nm) infra-red wavelength.
- 7. (c) Leptothrix, is a iron bacteria oxidise $Fe^{2+} \longrightarrow Fe^{3+}_{(Ferrous)} \longrightarrow Fe^{3+}_{(Ferric)}$ + chemical energy.
- Green bacteria contain green pigment bacterioviridin (chlorobium chlorophyll), which absorbs red light, showing maximum absorption in the region of 650-660.
- (d) The photosynthetic bacteria use inorganic electron donor such as H₂S, H₂, sulphur compound etc. They contain bacterio-chlorophyll but chlorophyll a is absent.
- (c) Purple non-sulphur bacteria contain purple pigment bacteriochlorophyll and carry on photosynthesis in presence of simple organic compounds like organic acids and alcohol *e.g., Rhodospirillum rubrum.*

 $2CH_3CHOHCH_3 + CO_2 \xrightarrow{\text{Sunlight}}$

 $(CH_2O) + 2CH_3COCH_3 + H_2O$

UNIVERSAL

 (c) The oldest micro-fossils discovered so far are that of photosynthetic cyanobacteria that appeared 3.3 to 3.5 billion year ago.

10000		Factors affecting photosynthesis
1.	(c)	
3.	(d)	Law of limiting factor was proposed by Blackman in

- 1905. He stated that when a process is conditioned as to its rapidity by a number of separate factors, the rate of the process is limited by the pace of slowest factor.4. (b) The maximum temperature at which photosymptocial sectors.
 - (b) The maximum temperature at which photosynthesis can occur is 55°C in some desert plants and 75°C for hot spring algae.
 - (a) German scientist Warburg (1920) reported in chlorella alga that high O_2 level inhibit rate of photosynthesis and this inhibition of photosynthesis by increased O_2 concentration is called Warburg's effect.
- (b) Rate will be increased due to the ejection of CO₂ from NaHCO₃.
- 7. (d) Blue and red regions of the light spectrum are the most effective in photosynthesis. Blue wavelengths of light carry more energy while red wavelengths have lesser energy. Therefore, the most efficient wavelengths of light effective in photosynthesis are those of light.
- (b) Compensation point is existed in morning and evening time. At this time the rate of photosynthesis (intake of CO₂) and rate of respiration (outcome of CO₂) is equal. At this point no exchange of CO₂ is possible through stomata. The unit is lumen.

Get More Learning Materials Here :

CLICK HERE

5.

11. (b) Because blue colour comes first in spectrum light.

UNIVERSAL BOOK DEPOT 196

- (c) R. Emerson and C.M. Lewis (1943) observed that the quantum yield of photosynthesis decreased towards the far red end of the spectrum (680nm or longer).
- (c) Normal conc. of CO₂ in atmosphere is 0.03% (*i.e.*, 300 ppm). By increases but after that it decreases.
- 15. (a) Because light reaction is much faster than dark reaction, so in continuous light there is accumulation of ATP and NADPH₂ and hence reduction in rate of photosynthesis but in discontinuous light, ATP and NADPH₂ formed in light are fully consumed during dark in reduction of CO₂ to carbohydrates.
- **22.** (c) If the amount of oxygen in the atmosphere decreases then photosynthesis will increase in C_3 cycle (wheat) and no change in C_4 cycle.

Critical Thinking Questions

- (b) Normally plants utilize sunlight but marine algae also use moon light, photosynthesis even occur in electric light.
- (c) RuBP-oxygenase is a form of Rubisco, which constitutes 16% of chloroplast protein. It is the most abundant protein on this planet.
- (a) Cytochromes Hence proteins (iron containing proteins) serving as electron carriers in respiration photosynthesis and other oxidative reduction reactions.
- (b) Reduction of carbon, anabolised organic compound will give ATP during respiration. Photosynthesis is an anabolic and endothermic reaction. It is a mechanism of synthesis of food.
- (b) Lichen's can photosynthesize at very low temperature.
 i.e., 24°C.
- (a) Chlorophyll a occurs in all except photoautotrophic bacteria, i.e., all oxygenic photoautotrophs.
- (c) Chlorophyll a is bluish-green with empirical formula of C₅₅H₇₂O₅N₄Mg.
- 16. (b) Purple sulphur bacteria and non-sulphur bacteria contain bacterio-chlorophyll, which is having 2H-atoms more than chl. a and it absorbs 850-950 nm (infra-red) wavelength of light.
- **18.** (d) C_4 plants mostly in monocot plants (Artiplex, sugarcane, maize, cyperus) and some dicots (Amaranthus).
- (c) In carboxylation Ribulose 1, 5 biphosphate (RuBP) (= Ribulose diphosphate) acts as CO₂ acceptor and 6 mols of RuBP react with 6 mols of CO₂ and 6 mols of water giving rise to 12 mols of 3-phosphoglyceric acid.

- 23. (d) 3 molecules of CO₂ combine with 3 molecules of RuBP to produce 3 molecules of an unstable 6-C compound which immediately breaks down into molecules of 3-phosphoglyceric acid.
- 28. (d) Chromatophores contain pigments and they are found in blue green algae for photosynthesis.

Assertion and Reason

- (b) C₄ pathway found in tropical angiosperms and called as Hatch and Slack cycle. Here CO₂ is fixed by 3C compound (phosphoenol pyruvate, PEP).
- (b) Six molecules of CO₂ enter Calvin cycle to produce one hexose molecule whereas 18 ATP, 12 NADPH + H⁺ molecules are used up. The light reaction of photosynthesis results in ATP and NADPH₂ formation.
- (c) Anthocyanin pigment, present in cell sap of vacuole. It is responsible for the colouration of flower parts. It is not a photosynthetic pigment.
- 4. (b) Although the efficiency of photosynthesis is uniform over most of the spectrum, it declines significantly in the red, *i.e.*, at wavelength of 680 nm and above. This phenomenon is called red drop. However, it was shown by Emerson that if light at 680 nm is supplemented with light of a shorter wavelength (< 600 nm), the quantum efficiency of photosynthesis in the red can be restored to normal.</p>
- 5. (a) Small quantity of oxygen is essential for photosynthesis except in some anaerobic bacteria. The inhibition of photosynthesis at high O₂ levels may be due to (i) Oxygen takes part in oxidation of photosynthetic pigments, intermediates and enzymes in the presence of strong light (photo-oxidation), (ii) Oxygen is a strong quencher of excited state of chlorophyll, (iii) It converts RuBP carboxylase to RuBP-oxygen. At a very high oxygen content the rate of photosynthesis begins to decline in all plants. The phenomenon is called Warburg effect (reduction due to photorespiration).
 - (a) C_4 photosynthetic pathway is more efficient than C_3 pathway as C_4 plants can pick up CO_2 even when it is found in low concentration. PEP enzymes shows high affinity for CO_2 . C_4 plants contain two types of chloroplast (Kranz anatomy) : bundle sheath chloroplast and mesophyll chloroplast. Bundle sheath cells contain calvin cycle enzymes. Due to high concentration of CO_2 in bundle sheath cells, *RuBP* carboxylase works only for calvin cycle and not for photorespiration.

Photorespiration is a wasteful process as it works to undo the act of photosynthesis in C_4 plants. No energy rich compound is produced in this process. When more and more increase temperature lost by photosynthetically carbon is fixed photorespiration thus reducing the efficiency of C_3 plants.

Get More Learning Materials Here :

CLICK HERE

6.

- (c) CAM plants do not exhibit the structural compartmentation (C₃ and C₄ cycles taking place in different cells) of conventional C₄ plants. CAM plants fix CO₂ at night because their stomata are open at night and closed during the day.
- 8. (b) Plants that utilize primarily *RuBP* to fix CO₂, which results in the formation of the three-carbon compound 3-PGA, are called C₃ plants. Hatch and Slack proposed a new pathway of CO₂ fixation via the carboxylation of PEP. Because the products are four-carbon compounds, plants exhibiting this pathway are referred to as C₄ plants.
- 9. (b) Cyclic pathway of photosynthesis is appeared first in some eubacterial species. It is supposed to be the first evidence of production of ATP in the presence of light. During non-cyclic photophosphorylation photolysis of water takes place. Under the influence of light energy and the catalytic action of chlorophyll, water a substance of low energy value, is split up into oxygen and hydrogen. Oxygen is used in the chloroplast. Non-cyclic photophosphorylation is the only natural process which adds molecular oxygen to the atmosphere.
- 10. (d) The grana stacks of membranes are enriched in PS II and LHC (Light harvesting centre), while there is little ATP synthetase. On the other hand, a fraction of stroma thylakoids is rich in PS I and ATPase and poor in PS II and LHC.
- (b) In case of cyclic photophosphorylation, the electron, while passing between ferredoxin and plastoquinone and/or over the cytochrome complex the electron loses sufficient energy to form ATP from ADP and inorganic phosphate.
- 12. (b) The synthesis of ATP via electron flow through the ETS, with oxygen as the terminal electron acceptor, is known as oxidative phosphorylation and takes place in mitochondria. In contrast to the oxidative phosphorylation of mitochondria, O₂ is not used in photophosphorylation of chloroplasts and NADP⁺ is last electron acceptor.

13. (c) Each molecule of ribulose-1, 5-biphosphate fixes one molecule of carbon dioxide with the addition of water, thereby resulting in the formation of two molecules of 3-phosphoglyceric acid (3-PGA). The fixation and reduction of one molecule of CO₂ requires three molecules of ATP and two of NADPH, coming from the photochemical reactions.

NIVERSAL DOK DEPO

- 14. (e) Malic acid or aspartic acid is translocated to bundle sheath cells through plasmodesmata. Inside the bundle sheath cells they are decarboxylated (and deaminated in case of aspartic acid) to form pyruvate and CO₂. CO₂ is again fixed inside the bundle sheath cells through Calvin cycle. RuBP of Calvin cycle is called secondary or final acceptor of CO₂ in C₄ plants.
 - (e) The overall equation of photosynthesis is
 CO₂ + 2H₂O + n(hν) → (CH₂O) + H₂O + O₂.
 The standard free-energy change for the synthesis of
 hexose from CO₂ and H₂O is ΔG° = +686 kcal. As six
 molecules of CO₂ is involved to form one molecule of
 hexose, the energy input per CO₂ molecule will be
 114 kcal.

15.

CLICK HERE

≫

- 16. (a) The energy balance of photosynthesis is : $6CO_2 + 12H_2O \xrightarrow{hght} C_6H_{12}O_6 + 6CO_2 + 6H_2O$ which represents a storage of 686,000 calories per mole. This energy is provided by a total of 12 NADPH and 18 ATP molecules, which represent 750,000 calories. The efficiency reached by the PCR cycle is thus as high as 90% (686/750 × 100 = 90%).
- (e) Plants are grouped into two groups depending upon their inability or ability to tolerate high light intensityshade plants (Sciophytes) and sun plants (Heliophytes). Sciophytes grow in poorly illuminated conditions as below the canopy of tall plants in seek of shade. Heliophytes grow in the open.
- **18.** (e) Less than 1% of the total water absorbed is utilized in photosynthesis. The rest is lost in transpiration. Even a slight increase in transpiration reduces the leaf hydration that cuts down photosynthesis by causing stomatal closure and hence decreased CO_2 absorption, loss of leaf turgidity, reduced absorption of solar radiations and decrease enzymatic activity.

🕀 www.studentbro.in

UNIVERSAL BOOK DEPOT 1960

694 Photosynthesis in Higher Plants

Photosynthesis in Higher Plants

		The second se			every CO_2 molecule, the					
	reduction and regeneration steps require									
			C	PM	[AMU (Med.) 2009, 10; [T 2010; Kerala PMT 2011]					
	(a)	3 ATP and NAD			2 ATP and 2 NADPH ₂					
		2 ATP and 3 NA			3 ATP and 3 NADPH ₂					
	1.1	3 ATP and 1 NA		-/						
2.				pre	esence of light and green					
	plar	nts" was first said	by							
	(a)	De Saussure	()	b)	Priestley					
	(c)	Van Helmont	(0	d)	Ingenhousz					
3.			e following	3 1	photosynthetic autotrophs					
		eive their energy			[WB JEE 2008]					
	(a)	Heat	()	b)	Inorganic chemicals					
	(c)	Organic chemica	als (o	d)	Light					
4.		ing cyclic electro roduced	n transport	t, 1	which one of the following [J & K CET 2010]					
		ATP only	()	ь)	Erythrose					
	18 5	NADH ₂			None of these					
		-								
5.	For each molecule of glucose formed in plants, the number of molecule of ATP and NADPH ₂ required are respectively									
					[MH CET 2006]					
	(a)	12 and 18	(1	Ь)	18 and 12					
		45 140								
	(c)	15 and 10	((d)	3 and 22					
6.	How	w many molecul	es of glycin	ne	is required to release one					
6.	How	w many molecul P_2 molecule in ph	es of glycir otorespirat	ne ior	is required to release one [AFMC 2004]					
6.	Hov CO (a)	w many molecul θ_2 molecule in ph One	es of glycir otorespirat (I	ne ior b)	is required to release one [AFMC 2004] Two					
6. 7.	Hov CO (a) (c) The	w many molecul 2 molecule in ph One Three 2 process in whic	es of glycir otorespirat (I (1	ne ior b) d)	is required to release one [AFMC 2004] Two Four gy is lost by light waves is					
	Hov CO (a) (c) The calle	w many molecul ₂ molecule in ph One Three process in whic ed	es of glycir otorespirat (I (d h excess er	ne ior b) d) ner	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002]					
	Hov CO (a) (c) The calle (a)	w many molecul ² molecule in ph One Three process in which ed Fluorescence	es of glycir otorespirat (I (n h excess er	ne ior b) d) ner	is required to release one [AFMC 2004] Two Four rgy is lost by light waves is [JIPMER 2002] Photophosphorylation					
7.	Hov CO (a) (c) The calle (a) (c)	w many molecul 2 molecule in ph One Three process in whic ed Fluorescence Photolysis	es of glycir otorespirat (I (n h excess er (I (n	ne ior b) d) ner b) d)	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation					
7.	Hov CO (a) (c) The call (a) (c) With is tr	w many molecule p_2 molecule in pho- One Three process in whice ed Fluorescence Photolysis h respect to communication ue for C_3 and C_4	es of glycir otorespirat (f (h excess er (f pensation plants	ne ior b) d) ner b) d) po	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following [GUJCET 2007]					
	Hov CO (a) (c) The call (a) (c) With is tr	w many molecule p_2 molecule in pho- One Three process in whice ed Fluorescence Photolysis h respect to communication ue for C_3 and C_4	es of glycir otorespirat (f (h excess er (f pensation plants	ne ior b) d) ner b) d) po	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following					
7.	Hov CO (a) (c) The call (a) (c) With is tr (a)	w many molecule P_2 molecule in pho One Three process in whice ed Fluorescence Photolysis h respect to com ue for C_3 and C_2 Compensation p	es of glycir otorespirat (I h excess er (I pensation plants points of C	ne ior b) d) ner b) d) po	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following [GUJCET 2007]					
7.	How CO (a) (c) The calle (a) (c) Witt is tr (a) (b)	w many molecule p_2 molecule in ph One Three process in which ed Fluorescence Photolysis h respect to com ue for C_3 and C_4 Compensation p Compensation plant	es of glycir otorespirat (f (h excess er (f pensation plants points of C point of C	he ior b) d) her b) d) po $_{3}$	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following [GUJCET 2007] and C_4 plants are equal plant is higher than C_4					
7.	Hov CO (a) (c) The call (a) (c) With is tr (a)	w many molecule p_2 molecule in ph One Three Process in whice ed Fluorescence Photolysis h respect to com ue for C_3 and C_4 Compensation p Compensation plant Compensation	es of glycir otorespirat (f (h excess er (f pensation plants points of C point of C	he ior b) d) her b) d) po $_{3}$	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following [GUJCET 2007] and C_4 plants are equal					
7.	How CO (a) (c) The calle (a) (c) Witt is tr (a) (b)	w many molecule p_2 molecule in ph One Three process in whice ed Fluorescence Photolysis h respect to com- ue for C_3 and C_4 Compensation pole Compensation plant Compensation plant	es of glycir otorespirat (f (h excess er (f pensation plants points of C point of C point of C	he ior b) d) her b) d) po $_{3}$	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following [GUJCET 2007] and C_4 plants are equal plant is higher than C_4					
7.	Hov CO (a) (c) The call (a) (c) With is tr (a) (b) (c) (d)	w many molecule p_2 molecule in ph One Three process in whice ed Fluorescence Photolysis h respect to com ue for C_3 and C_4 Compensation p Compensation plant Compensation plant	es of glycir otorespirat (I h excess er (I pensation plants points of <i>C</i> point of <i>C</i> point of <i>C</i>	he ior b) d) her b) d) po 3 3 C_4	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following [GUJCET 2007] and C_4 plants are equal plant is higher than C_4 plant is higher than C_3 far-red light is					
7.	How CO (a) (c) The calld (a) (c) Witt is tr (a) (b) (c) (d) A p	w many molecule p_2 molecule in phologonal One Three process in whice ed Fluorescence Photolysis h respect to community the for C_3 and C_4 Compensation pro- Compensation plant None of the about igment which about	es of glycir otorespirat (f (h excess er (f pensation plants points of C point of C point of C point of C	he ior b) d) her b) d) po C_3 C_4 nd	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following [GUJCET 2007] and C_4 plants are equal plant is higher than C_4 plant is higher than C_3 far-red light is [CBSE PMT 1997]					
7.	Hov <i>CO</i> (a) (c) The calld (a) (c) With is tr (a) (b) (c) (d) A p (a) (a)	w many molecule p_2 molecule in ph One Three process in whice ed Fluorescence Photolysis h respect to communication pro- Compensation plant Compensation plant None of the about igment which about Phytochrome	es of glycir otorespirat (f ((h excess er (f (pensation plants points of C point of C point of C point of C point of C (point of C (point of C ()	he ior b) d) her b) d) po C_3 C_4 nd b)	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following [GUJCET 2007] and C_4 plants are equal plant is higher than C_4 plant is higher than C_3 far-red light is [CBSE PMT 1997] Carotene					
7. 8. 9.	Hov CO (a) (c) The call((a) (c) With is tr (a) (b) (c) (d) A p (a) (c)	w many molecule p_2 molecule in pho One Three Process in whice Photolysis h respect to complement Compensation plant Compensation plant None of the about igment which about Phytochrome Cytochrome	es of glycir otorespirat (f ((h excess er (f (pensation plants point of C point of C point of C point of C sorbs red a ((he ior b) d) her b) d) po C_3 C_4 nd b) d)	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following [GUJCET 2007] and C_4 plants are equal plant is higher than C_4 plant is higher than C_3 far-red light is [CBSE PMT 1997] Carotene Xanthophyll					
7.	Hov CO (a) (c) The call((a) (c) With is tr (a) (b) (c) (d) A p (a) (c)	w many molecule p_2 molecule in pho One Three Process in whice Photolysis h respect to complement Compensation plant Compensation plant None of the about igment which about Phytochrome Cytochrome	es of glycir otorespirat (f ((h excess er (f (pensation plants point of C point of C point of C point of C sorbs red a ((he ior b) d) her b) d) po C_3 C_4 nd b) d)	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following [GUJCET 2007] and C_4 plants are equal plant is higher than C_4 plant is higher than C_3 far-red light is [CBSE PMT 1997] Carotene Xanthophyll during photorespiration					
7. 8. 9.	How CO (a) (c) The call (a) (c) Witt is tr (a) (b) (c) (d) A p (c) (a) (c) Wh	w many molecule p_2 molecule in phologonal One Three process in whice ed Fluorescence Photolysis h respect to community the for C_3 and C_4 Compensation phone plant None of the about igment which about Phytochrome Cytochrome ich of the following	es of glycir otorespirat (f (h excess er (f pensation plants points of C point of C point of C point of C point of C sorbs red a (f (ng is forme	he ior b) d) her b) d) po C_3 C_4 hd b) d) d) d) d) d) d)	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following [GUJCET 2007] and C_4 plants are equal plant is higher than C_4 plant is higher than C_3 far-red light is [CBSE PMT 1997] Carotene Xanthophyll during photorespiration [Kerala PMT 2011]					
7. 8. 9.	How CO (a) (c) The call (a) (c) Witt is tr (a) (b) (c) (d) A p (c) (a) (c) Wh	w many molecule p_2 molecule in ph One Three process in whice ed Fluorescence Photolysis h respect to community to compensation pro- Compensation plant Compensation plant None of the about igment which about Phytochrome Cytochrome ich of the following Sugar	es of glycir otorespirat (f (h excess er (f pensation plants points of C point of C point of C point of C point of C point of C (f (ng is forme	ne ior b) d) ner b) d) po $_3$ $_3$ $_2$ (1) $_3$ $_3$ $_2$ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	is required to release one [AFMC 2004] Two Four gy is lost by light waves is [JIPMER 2002] Photophosphorylation Photooxidation int, which of the following [GUJCET 2007] and C_4 plants are equal plant is higher than C_4 plant is higher than C_3 far-red light is [CBSE PMT 1997] Carotene Xanthophyll during photorespiration					

ET Self Evaluation Test

11. Which pigment is absent in chloroplast

-

	L.	r a benittan daerah hung
	Which one of the follow	ing does not play any role in
	photosynthesis	[DUMET 2010]
	(a) Xanthophyll	(b) Anthocyanin
	(c) Chlorophyll 'a'	(d) Carotene
12.	Which one of the follo chlorophyll a	wing statements is correct for [MP PMT 1995]
	(a) Chlorophyll a is four leaves of most plants	nd more than chlorophyll b in
	(b) Chlorophyll a and b leaves of most plants	are found in equal proportion in
		l less than chlorophyll b in leaves
		l ten fold more than chlorophyll a s
13.		nt from C ₃ plants with reference [AFMC 1997]
	(a) Substance that accept	CO ₂ in carbon assimilation
	(b) Type of end product o	
		re consumed in preparing sugar
	(d) Types of pigments invo	
14.		
14.	Synthesis of food in C4 pe	athway occurs in chlorophyll of [KCET 2007]
165 -	(a) Guard cells	(b) Bundle sheath
	(c) Spongy mesophyll	(d) Palisade cells
15.	NH ₃ Release from	[MP PMT 2007]
	(a) Photorespiration	(b) Dark respiration
	(c) CAM	(d) All of these
16.	Which of the following fixes	CO2 in carbohydrates[BVP 2003]
	(a) Rhodospirillium	(b) Nitrobacter
	(c) Rhizobium	(d) Bacillus
17.	Liberation of O_2 when gr	een cells in water are exposed to
	sunlight in the presence of	suitable acceptor is called [KCET 2007]
	(a) Arnon's reaction	(2x = (b)_1 be writing all All P
	(b) Emerson's enhance eff	fect
	(c) Blackmann's reaction	
	(d) Hill's reaction	
18.	Which of the following photosynthesis at high tem	
	(a) Opuntia	(b) Mango

(d) None of the above (c) Potato

Get More Learning Materials Here : 📕

8.

- The first product of CO₂ fixation in Hatch and Slack (C₄) cycle in plants is [KCET (Med.) 2001, 10]
 - (a) Formation of oxaloacetate by carboxylation or phosphoenol pyruvate (PEP) in bundle sheath cells
 - (b) Formation of phosphoglyceric acid in mesophyll cells
 - (c) Formation of bundle sheath cells
 - (d) Formation of oxaloacetate by carboxylation of phosphoenol pyruvate (PEP) in the mesophyll cells
- 20. Optimum temperature for Photosynthesis is [MP PMT 2011]
 - (a) $10 15^{\circ}C$ (b) $20 25^{\circ}C$
 - (c) $25 30^{\circ}C$ (d) $35 40^{\circ}C$

A Answers and Solutions

1	a	2	b	3	d	4	а	5	b
6	b	7	d	8	b	9	а	10	b
11	b	12	a	13	a	14	b	15	a
16	a	17	d	18	a	19	d	20	c

- (b) Priestley demonstrated that green plants purify the foul air (*i.e.*, phologiston) produced by burning of candle and convert it into pure air (*i.e.*, Dephologiston).
- (b) During formation of one glucose molecule in plant 3 ATP required for fixation of one CO₂ molecule. Thus in plants required 18 ATP and 12 NADPH₂.
- 6. (b) There is two molecule of glycine used and interact to form one molecule each of serine CO₂ and NH₃.
 2Glycine+H₂O+NAD → Serine + CO₂+NH₃+NADP
- (d) Certain cell constituents are oxidized by oxygen into CO₂ as known as photo-oxidation.

(b) Under the conditions of sufficient light and low CO_2 concentration, the rate of photosynthesis equals the rate of respiration (respiration and photorespiration together) in any plant. This concentration of atmospheric CO_2 absorbed from the atmosphere equals the amount of CO_2 at which the photosynthesis and respiration become balanced is called - CO_2 compensation point. This compensation point is achieved when the amount of CO_2 absorbed from the atmosphere equals the amount of CO_2 absorbed from the atmosphere equals the amount of CO_2 absorbed from the atmosphere equals the amount of CO_2 absorbed from the atmosphere equals the amount of CO_2 absorbed from the atmosphere equals the amount of CO_2 released through plant respiration. However is necessary that available light does not become a limiting factor. At this point, effective photosynthesis becomes nil. The compensation point is higher in C_3 plants in relation to that in C_4 plants as rate of photorespiration is high in C_3 plants.

IVERSAL OK DEPOT 196

- 9. (a) Phytochrome is a proteinaceous pigment found in low concentrations in most plant organs. It exists in two forms P _{sub FR} (or P _{sub 660}) has an absorption peak at 660nm (red light) and the other P _{sub FR} (or P _{sub 730}) at 730nm (far-red).
- (b) Anthocyanin pigment is absent in chloroplast. It is present in cell sap of vacuole and not take any part in photosynthesis.
- (a) Chlorophyll *a* is found in all autotrophic plants except the photosynthetic bacteria.
- **13.** (a) Here in C_4 plants, CO_2 acceptor molecule is PEP (Phosphoenol pyruvate) and in C_3 plant CO_2 molecule is RuBP (ribulose 1-5 biphosphate).
- (a) Rhodospirillum bacteria completed their photosynthesis by bacteriochlorophyll b. These are found in mud and stagnant water.
- (a) For desert plants like Opuntia required 50°C temperature for photosynthesis.
- (d) CO₂ taken from the atmosphere is accepted by phosphoenolpyruvic acid (PEP) present in the chloroplast of mesophyll cells of these leaves, leading to the formation of a 4-C compound, oxaloacetic acid (OAA).

🕀 www.studentbro.in

* * *